Jpp 20.0.0-rc.2
the software that should make you happy
Loading...
Searching...
No Matches
JTestEffectiveLogLikelihoodRatio.hh
Go to the documentation of this file.
1#ifndef __JCOMPAREHISTOGRAMS__JTESTEFFECTIVELOGLIKELIHOODRATIO__
2#define __JCOMPAREHISTOGRAMS__JTESTEFFECTIVELOGLIKELIHOODRATIO__
3
4#include <istream>
5#include <ostream>
6
7#include "JLang/JException.hh"
8
11
12#include "TH1.h"
13
14
15/**
16 * \author bjung
17 */
18namespace JCOMPAREHISTOGRAMS {
19
20 /**
21 * Implementation of the effective log-likelihood ratio test.
22 * The first histogram is treated as an Asimov dataset corresponding to a given null hypothesis,
23 * which is compared to an alternative hypothesis given by the second histogram.
24 *
25 * This likelihood in this method is taken from the article:
26 * "A binned likelihood for stochastic models"
27 * JHEP, Volume 2019, article number 30, (2019),
28 * by C.A. Argüelles, A. Schneider and T. Yuan.
29 * DOI: 10.1007/JHEP06(2019)030
30 */
32 public JTest_t
33 {
34 public:
35
36 /**
37 * Default constructor.
38 */
40 JTest_t("Effective_NLLR", "NLLR"),
41 threshold(0.0)
42 {}
43
44
45 /**
46 * Get negative log-likelihood (i.e. \f[-2 \ln\left(\mathcal{L}\right)\f]).
47 *
48 * \param k number of observed events
49 * \param n model prediction
50 * \param ne model prediction error
51 */
52 static double getNLL(const double k,
53 const double n,
54 const double ne)
55 {
56 using namespace JPP;
57
58 static const double epsilon = std::numeric_limits<double>::min();
59
60 if (k < 0.0) {
61 THROW(JValueOutOfRange, "JTestEffectiveLogLikelihoodRatio::getNLL(): Invalid number of events: " << k);
62 }
63
64 if (n < 0.0) {
65 THROW(JValueOutOfRange, "JTestEffectiveLogLikelihoodRatio::getNLL(): Invalid model prediction: " << n);
66 }
67
68 double M = epsilon; // Relative bin variance of given model
69
70 if (n > 0.0 && ne > 0.0) {
71 M = n/ne/ne;
72 } else if (n > 0.0) {
73 THROW(JDivisionByZero, "JTestEffectiveLogLikelihoodRatio::getNLL(): Invalid effective bin content (bin content error is zero)");
74 }
75
76 const double N = n*M; // Effective bin content
77
78 return -2.0 * ((N + 1) * log(M) -
79 (k + N + 1) * log(1 + M) +
80 lgamma(k + N + 1) -
81 lgamma(N + 1) -
82 lgamma(k + 1));
83 }
84
85
86 /**
87 * Applies a log-likelihood ratio test to the two given histograms.\n
88 * The first histogram is treated as an Asimov dataset corresponding to a given null hypothesis.\n
89 * The second histogram is treated as the expectation for the alternative hypothesis, to which the null hypothesis is compared.
90 *
91 * \param o1 First histogram
92 * \param o2 Second histogram
93 */
94 void test(const TObject* o1, const TObject* o2) override
95 {
96 using namespace std;
97 using namespace JPP;
98
99 const TH1* h1 = dynamic_cast<const TH1*>(o1);
100 const TH1* h2 = dynamic_cast<const TH1*>(o2);
101
102 if (h1 == NULL || h2 == NULL) {
103 THROW(JValueOutOfRange, "JTestEffectiveLogLikelihood::test(): Could not cast given TObjects to TH1.");
104 }
105
106 if(h1->GetNbinsX() != h2->GetNbinsX() ||
107 h1->GetNbinsY() != h2->GetNbinsY() ||
108 h1->GetNbinsZ() != h2->GetNbinsZ()) {
109 THROW(JValueOutOfRange, "JTestEffectiveLogLikelihood::test(): Histograms with different binning. The objects: " <<
110 h1->GetName() << " and " << h2->GetName() << " can not be compared." << endl);
111 }
112
113 TH1* h3 = (TH1*) h1->Clone(h1->GetName() == h2->GetName() ?
114 MAKE_CSTRING(h1->GetName() << "_" << testName) :
115 MAKE_CSTRING(h1->GetName() << "_VS_" << h2->GetName() << "_" << testName));
116
117 h3->Reset();
118
119 double LnLratio = 0.0;
120
121 for (int i=1 ; i <= h1->GetNbinsX() ; ++i) {
122 for (int j=1 ; j <= h1->GetNbinsY() ; ++j) {
123 for (int k=1 ; k <= h1->GetNbinsZ() ; ++k) {
124
125 const double n1 = h1->GetBinContent(i,j,k);
126 const double n2 = h2->GetBinContent(i,j,k);
127
128 const double e1 = h1->GetBinError(i,j,k);
129 const double e2 = h2->GetBinError(i,j,k);
130
131 double contribution = 0.0;
132
133 if (n1 > 0.0) {
134 contribution = (getNLL(n1, n2, e2) -
135 getNLL(n1, n1, e1));
136 } else if (n2 > 0.0) {
137 contribution = getNLL(n1, n2, e2);
138 } // Skip bins with zero data and zero prediction
139
140 h3->SetBinContent(i,j,k, contribution);
141
142 LnLratio += contribution;
143 }
144 }
145 }
146
147 const bool passed = (LnLratio < threshold);
148
149 const JResultTitle title(testName, resultType, passed, LnLratio);
150
151 h3->SetTitle(title.getTitle().c_str());
152 h3->GetYaxis()->SetTitle(resultType.c_str());
153
154 const JTestResult r (testName,
155 JRootObjectID(MAKE_STRING(h1->GetDirectory()->GetPath() << h1->GetName())),
156 JRootObjectID(MAKE_STRING(h2->GetDirectory()->GetPath() << h1->GetName())),
157 resultType, LnLratio, threshold, h3, passed);
158
159 this->push_back(r);
160 }
161
162
163 /**
164 * Read test parameters from input.
165 *
166 * \param in input stream
167 * \return input stream
168 */
169 std::istream& read(std::istream& in) override
170 {
171 using namespace JPP;
172
173 in >> threshold;
174
175 if (!(threshold > 0.0)) {
176 THROW(JValueOutOfRange, "JTestEffectiveLogLikelihoodRatio::read(): Given chi-square threshold " << threshold << " is invalid");
177 }
178
179 return in;
180 }
181
182 private:
183
184 double threshold; //!< threshold chi-square to decide if test is passed.
185 };
186}
187
188#endif
Exceptions.
#define THROW(JException_t, A)
Marco for throwing exception with std::ostream compatible message.
#define MAKE_CSTRING(A)
Make C-string.
Definition JPrint.hh:72
#define MAKE_STRING(A)
Make string.
Definition JPrint.hh:63
Class dedicated to standardize the title of the graphical objects produced by the JTest_t() derived c...
std::string getTitle() const
Returns a standard string to be used as title of a graphical root object.
Implementation of the effective log-likelihood ratio test.
void test(const TObject *o1, const TObject *o2) override
Applies a log-likelihood ratio test to the two given histograms.
std::istream & read(std::istream &in) override
Read test parameters from input.
double threshold
threshold chi-square to decide if test is passed.
static double getNLL(const double k, const double n, const double ne)
Get negative log-likelihood (i.e.
Interface to read input and write output for TObject tests.
Definition JTest_t.hh:42
const std::string resultType
test result type
Definition JTest_t.hh:181
const std::string testName
test name
Definition JTest_t.hh:180
Auxiliary class to handle file name, ROOT directory and object name.
Exception for division by zero.
Exception for accessing a value in a collection that is outside of its range.
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
Structure containing the result of the test.