27   using TMath::PoissonI;
 
   29   static const int NUMBER_OF_DIMENSIONS  =  3;
 
   35   typedef JArray<NUMBER_OF_DIMENSIONS, double>  point_type;
 
   42     public JArray<1 + 2 * NUMBER_OF_DIMENSIONS, double>  
 
   48       JArray<1 + 2 * NUMBER_OF_DIMENSIONS, double>()
 
   58     template<
class ...Args>
 
   59     model_type(argument_type value, 
const Args& ...args) :
 
   60       JArray<1 + 2 * NUMBER_OF_DIMENSIONS, double>(value, args...)
 
   70     inline double operator()(
const point_type& point)
 const 
   72       double value = (*this)[0];
 
   74       for (
int i = 0; i != NUMBER_OF_DIMENSIONS;++i) {
 
   75         value *= 
gauss(point[i] - (*
this)[2*i + 1], (*
this)[2*i + 2]);
 
   89     static inline double gauss(
const double x, 
const double sigma)
 
   91       const double u = x / sigma;
 
  114     hit_type(
const point_type& point, 
const double value, 
const double sigma) :
 
  132   inline double chi2(
const model_type& model, 
const hit_type& hit) 
 
  134     const double u = (model(hit) - hit.value) / hit.sigma;
 
  147   inline double likelihood(
const model_type& model, 
const hit_type& hit) 
 
  149     return -log(PoissonI(hit.value, model(hit)));
 
  160 int main(
int argc, 
char **argv)
 
  165   typedef JArray<2, double> array_type;
 
  175     JParser<> zap(
"Program to test JSimplex algorithm.");
 
  185   catch(
const exception& error) {
 
  186     FATAL(error.what() << endl);
 
  190   gRandom->SetSeed(seed);
 
  200   for (
int i = 0; i != NUMBER_OF_DIMENSIONS; ++i) {
 
  201     model[i*2 + 1] = gRandom->Uniform(-sigma, +sigma);
 
  202     model[i*2 + 2] = gRandom->Gaus(sigma, 0.2*sigma);
 
  205   const JGrid<double> grid(11, -3.0*sigma, +3.0*sigma);
 
  208   JSimplex<model_type> simplex;
 
  211   JSimplex<model_type>::MAXIMUM_ITERATIONS  =  10000;
 
  213   double (*fit)(
const model_type&, 
const hit_type&) = likelihood;  
 
  218   TH1D h0(
"chi2/NDF", NULL, 200, 0.0, 10.0);
 
  220   H1.push_back(
new TH1D(
MAKE_CSTRING(
"p" << 0), NULL, 101, -20.0, +20.0));
 
  222   for (
size_t i =1; i != model.size(); ++i) {
 
  223     H1.push_back(
new TH1D(
MAKE_CSTRING(
"p" << i), NULL, 101, -0.1, +0.1));
 
  227   for (
int counter = 0; counter != numberOfEvents; ++counter) {
 
  229     STATUS(
"event: " << setw(10) << counter << 
'\r'); 
DEBUG(endl);
 
  236     for (JArrayIterator<NUMBER_OF_DIMENSIONS, double> 
g1(grid); 
g1; ++
g1) {
 
  238       const JArray<NUMBER_OF_DIMENSIONS, double> 
p1 = *
g1;
 
  240       const double value = gRandom->Poisson(model(p1));
 
  241       const double sigma = (value > 1.0 ? sqrt(value) : 0.7);
 
  243       data.push_back(hit_type(p1, value, sigma));         
 
  249     JQuantile Q[NUMBER_OF_DIMENSIONS];
 
  253     for (
const auto& hit : data) {
 
  255       for (
int i = 0; i != NUMBER_OF_DIMENSIONS; ++i) {
 
  256         Q[i].put(hit[i], hit.value);
 
  259       if (hit.value > value) {
 
  261         simplex.value[0] = hit.value;
 
  263         for (
int i = 0; i != NUMBER_OF_DIMENSIONS; ++i) {
 
  264           simplex.value[2*i + 1] = hit[i];
 
  271     for (
int i = 0; i != NUMBER_OF_DIMENSIONS; ++i) {
 
  272       simplex.value[2*i + 2] = 1.0 * Q[i].getSTDev();
 
  278     simplex.step.resize(2*NUMBER_OF_DIMENSIONS + 1);
 
  282     simplex.step[0]    = model_type();
 
  283     simplex.step[0][0] = 1.0;
 
  285     for (
int i = 0; i != NUMBER_OF_DIMENSIONS; ++i) {
 
  287       simplex.step[2*i + 1]          = model_type();
 
  288       simplex.step[2*i + 1][2*i + 1] = 0.1;
 
  290       simplex.step[2*i + 2]          = model_type();
 
  291       simplex.step[2*i + 2][2*i + 2] = 0.1;
 
  294     DEBUG(
"start values " << simplex.value << endl);
 
  296     for (
size_t i = 0; i != simplex.step.size(); ++i) {
 
  297       DEBUG(
"step: " << setw(2) << i << 
' ' << simplex.step[i] << endl);
 
  303     const double chi2 = simplex(fit, data.begin(), data.end());
 
  304     const int    ndf  = data.size()  -  simplex.step.size();
 
  309     for (
size_t i = 0; i != model.size(); ++i) {
 
  310       H1[i]->Fill(model[i] - simplex.value[i]);
 
  313     DEBUG(
"chi2 / NDF" << 
FIXED(12,3) << chi2 << 
" / " << ndf << endl);
 
  315     DEBUG(
"final values " << simplex.value << endl);
 
  316     DEBUG(
"model values " << model         << endl);
 
  320       for (
const auto& hit : data) {
 
  324         for (
int i = 0; i != NUMBER_OF_DIMENSIONS; ++i) {
 
  325           cout << 
FIXED(7,3) << hit[i] << 
' ';
 
  328         const double value = simplex.value(hit);
 
  330         cout << 
FIXED(7,3) << hit.value << 
' ' 
  331              << 
FIXED(7,3) << value  << 
' ' 
  332              << 
FIXED(7,3) << (hit.value - value) / hit.sigma << endl;
 
  346     for (
size_t i = 0; i != 
sizeof(
H1)/
sizeof(
H1[0]); ++i) {
 
Utility class to parse command line options. 
 
int main(int argc, char *argv[])
 
*fatal Wrong number of arguments esac JCookie sh typeset Z DETECTOR typeset Z SOURCE_RUN typeset Z TARGET_RUN set_variable PARAMETERS_FILE $WORKDIR parameters
 
#define MAKE_CSTRING(A)
Make C-string. 
 
Auxiliary data structure for floating point format specification. 
 
then set_variable FORMULA *[0] exp(-0.5 *(x-[1])*(x-[1])/([2]*[2]))*exp(-0.5 *(y-[1])*(y-[1])/([2]*[2]))" JF2 -o $WORKDIR/f2.root -F "$FORMULA" -@ "p0
 
I/O formatting auxiliaries. 
 
#define make_field(A,...)
macro to convert parameter to JParserTemplateElement object 
 
General purpose messaging. 
 
Utility class to parse command line options. 
 
double gauss(const double x, const double sigma)
Gauss function (normalised to 1 at x = 0). 
 
#define DEBUG(A)
Message macros. 
 
Double_t g1(const Double_t x)
Function.