
JNanobeacons. A Jpp package for KM3NeT inter-DOM

time calibration and more.

Rodrigo G. Ruiz

November 19, 2021

Abstract

This note describes the analysis of the KM3NeT nanobeacon runs to perform the inter-DOM time

calibration, and the tools developed with that purpose.

1 Introduction

The time calibration of a KM3NeT Detection Unit (DU) consists on finding the t0 for each Photo

Multiplier Tube (PMT) in the DU. The t0 of the ith PMT in the DU is measured in nanoseconds.

It is the time correction that should be added to the raw times of the hits recorded by the PMT in

order to get physical times that are consistent with the times of the rest of the hits in the DU:

tiphys = tiraw + ti0 (1)

The time calibration of a DU is divided into two different stages: intra-DOM time calibration,

and inter-DOM time calibration. The former is performed independently for each DOM in the DU.

It consists on finding the t0 for all the PMTs in a DOM, ensuring that the physical times of the hits

recorded by the 31 PMTs of the DOM will be consistent with each other. The intra-DOM calibration

is performed using the optical background and it is described in reference REF . Both of them are

carried out in the dark room before the DU is deployed, and periodically after the DU is deployed in

the sea water. Figure 1 shows the different stages in the calibraiton of a DU.

1

Figure 1: Different stages in the calibraiton of a DU.

After the intra-DOM time calibration has been performed, the physical times of the hits recorded

by each DOM are self consistent, but the physical times of the hits recorded by two different DOMS in

the DU are not consistent with each other. To make the physical times of the hits recorded by DOMS

i and j consistent with each other, it is necessary to find an inter-DOM correction factor ∆t0(i, j).

The aim of the inter-DOM time calibration is to find this factor. When the DUs are in the sea water

this process can be carried out by the use of the nanobeacons REF installed in each DOM. It consits

on finding the correction factor ∆t0(i, j) that makes the physical times of the hits in DOMS i and

j to be consistent with the time of flight of the light from DOM i to DOM j. This note explains

how this is done in the sea water, and the tools developed for this purpose. Sections 2 and 3 review

the concepts of the inter-DOM time calibration with nanobeacons, and section 4 explains the tools

developed for performing the corresponding analyses.

2

Figure 2: Plant view of the upper and lower hemispheres of a DOM. The magenta dot between PMTs

0, 3 and 4 in the upper hemisphere indicates the position of the nanobeacon

2 Inter-DOM time calibration with nanobeacons

Figure 2 shows the position where the nanobeacons are installed in each DOM. When a nanobeacon is

triggered it emits a light pulse (with a width of the order of ¡10 ns) that can be detected by different

PMTs in the DU. The inter-DOM calibration with nanobeacons is based on the measurement of the

arrival time of a nanobeacon pulse to PMTs located on different DOMs. Assuming that the distance

between the PMTs is known, one can compute the expected time difference between the arrival of

the puse to both PMTs (also called time of flight). A a result of the comparison of the expected time

difference with the observed time difference, a correction factor is obtained for the couple of DOMs

that host these PMTs. Formally, the procedure can be described as follows:

Let i and j be two PMTs in two different DOMs from the DU, and assume that a nanobeacon

pulse is detected by both of them. One can use equation 1 to compute the physical time of the hits

produced by the pulse in both PMTs,

tiphys = tiraw + ti0

tjphys = tjraw + tj0

(2)

Substracting both expressions one can obtain the physical time difference between the hits pro-

duced by the pulse in both PMTs as a function of the raw time differences and of the difference

3

between the t0 of both PMTs,

∆tphys = ∆traw(i, j) + ∆t0(i, j), (3)

where ∆ represents a difference (ie ∆t(i, j) = ti−tj). Therefore, ∆tphys(i, j) should be the expected

time of flight mentioned above. Assuming that the positions of both PMTs ririri and rjrjrj are well

determined, it can be computed as the time that light needs to propagate from ririri to rjrjrj in the sea

water,

∆tphys = d(ririri, rjrjrj)/cw. (4)

cw is the speed of light in water. Therefore, equation 3 allows to compute the quantity ∆t0(i, j) from

the PMT positions and from their respective measurements of the nanobeacon pulse.

If the intra-DOM time calibration has been performed and the t0s of the PMTs within each DOM

are consistent with each other, then the quantity ∆t0(i, j) can be used to appropriately shift the t0s

of all the PMTs in one of the DOMs. If this process is repeated iteratively with all the DOM pairs in

the DU, then the DU will be completely calibrated. The following example can help to visualize this

process.

2.1 A practical example

• Assume that both the acoustic positioning and the intra-DOM time calibration have been

performed in a DU, and that a detector file with the positions and t0s of all the PMTs is

available.

• Assume that the nanobeacon of the DOM in floor 1 is flashed, and its pulse is detected by the

PMT 0 of DOM in floor 1, and by the PMT 22 of the DOM in floor 2.

• The observation of the nanobeacon pulse by PMT0-F1 and PMT22-F2, the positions from the

detector file and equation 3 are used to compute the quantity

∆(t0)NB ≡ [∆t0(PMT − 22F2,PMT0 − F1)]NB .

This means that in order for the physical times of the hits recorded by these two PMTs to be

consistent, the t0 of PMT22-F2 must be larger than the t0 of PMT0-F1 by an amount ∆(t0)NB .

4

• One can use the detector file to calculate the value of this same quantity from the t0s before

the nanobeacon calibration, ∆(t0)DF . If ∆(t0)DF == ∆(t0)NB , this means that the positions

and the values of the t0s for both PMTs in the detector file would allow to calculate correctly

the time of flight of the nanobeacon pulse from one PMT to the other. Since the intra-DOM

calibration has already been performed, then nothing needs to be done because the PMTs in

each of the DOMS are correctly synchronized with each other.

• If ∆(t0)DF ! = ∆(t0)NB , then the t0s in the detector file should be corrected. This correction is

done by leaving the t0s for the PMTs in DOM 1 as they are in the detector file, and by shifting

the t0s of DOM2 by ∆(t0)NB − ∆(t0)DF . Keep in mind that in order to keep the results of

the intra-DOM time calibration, the t0s of ALL the PMTs in DOM 2 must be corrected by the

same factor. At this point, the t0s of all the PMTs in DOMs 1 and 2 are consistent.

• The process is repeated by flashing the nanobeacon in floor 3 and detecting its signal with a

PMT in DOM 4, and so on.

Figure 3 shows the comparison of three different detector files for the ORCA detector. The three

of them are identical except for the t0s of the PMTs in DU2. One contains the t0s estimated from

calibrations in the dark room, other contains the values after the inter-DOM calibration with nanobea-

cons as described above, and the third one contains the t0s found by an alternative inter-DOM time

calibration performed in the sea from the reconstruction of atmospheric muons. The X axis represents

couples of consecutive DOMS. The Y axis in the upper pannel represents ∆(t0)NB , ∆(t0)DR and

∆(t0)µ. The lower pannel represents the diference between the points in the upper pannel, and the

straight lines show the mean difference for all the pairs in the DU. Following the description of the

calibration method given above, this plot shows that both inter-DOM time calibration methods found

differences with respect to the dark room calibration that needed to be corrected. The compari-

son of the detector files obtained after performing both the nanobeacons and the atmospheric muon

calibrations, show that their results are consistent with each other.

3 Optimization of the nanobeacon voltages

For a better accuracy in the inter-DOM calibration with nanobeacons, the nanobeacons of each DOM

in a DU should be appropriately tuned. The ideal voltage for a nanobeacon is that voltage that

5

Figure 3: Comparison of detector files after different calibrations for ORCA DU2.

produces the maximum amount of hits in the PMTs around it with an average ToT value that doesn’t

exceed the 1 photo electron level (which, as suggested by some laboratory studies REF corresponds

to 26.4 ns).

The optimization of the nanobeacon voltages in a DU is performed by taking multiple runs, each

of them characterized by a voltage at which all the nanobeacons in the DU are tuned. Currently 9

runs are taken where the corresponding voltage values are 5.5V , 6V , 6.5V , 7V , 7.5V , 8V , 8.5V

, 10V and 15V. To optimize the voltage of a nanobeacon, one can look at the ToT distribution of

the hits that it produces in the closest PMT from the same DOM for each of the different runs (ie,

for each of the voltage values). Figure 4 shows these results for the nanobeacons in floors 3 and 10

of the ORCA DU2. Each of the curves shows the result of performing this operation different weeks.

These results tell that the behaviour of the nanobeacons is very stable with time and that in principle,

it suffices with performing the voltage optimization only once.

4 The Code

A set of tools has been developed and included in Jpp that allows to perform the inter-DOM time

calibration and to find the optimal nanobeacon voltage, as well as other studies related with the

nanobeacon pulses, such as studies related to the measurement of water properties.

Figure 5 show the flow diagrams for the voltage optimization and for the calibration analyses,

and the different programs involved. Automating these analyses would be rather simple for an ideal

6

Figure 4: Results of performing the nanobeacon optimization procedure four different times for two

nanobeacons in ORCA DU2. These curves show the mean ToT value of the hits produced by the

nanobeacon in the closest by PMT as a function of the nanobeacon voltage. The horizontal line

shows the 1 pe level. In this case, the nanobeacon voltages are tuned to 6.5V and 7V respectively.

detector where every PMT and nanobeacon worked well and stably, and where the nanobeacon signal

was observed as a nicely defined pulse by the different PMTs. But it may happen that certain pmts

or nanobeacons cease to work, that certain DOMs are switched off for whatever reason, or that the

nanobeacon signal is not very well detected by the PMTs. The programs depicted in figures 5 use

some common classes designed to make the code as compact as possible while accounting for different

eventualities and problems. The main difficulty is to decide at each time what PMTs and nanobeacons

to use for an analysis.

4.1 The common classes

The common classes mentioned above are four: the NBRun class, the SUPERMODULE class the SUPERPMT

class, and the NBPulse class. In the following, a brief description of each of them is given.

4.1.1 The NBPulse class

This class is devoted to the analysis and classification of the nanobeacon signal as observed by a

given PMT. All of its methods and attributes are realted to a 2D histogram with the ToT and time

distribution for the hits recorded by the PMT during a time window wide enough to include the hits

7

Figure 5: Flow diagrams containing the different programs that perform the inter-DOM time calibra-

tion and the nanobeacon voltage optimization. The red boxes indicate the output that these chains

are designed to produce. The orange boxes represent extra optional output. The green boxes represent

input files, and the blue boxes represent the programs.

produced by the nanobeacon. Some examples of such histograms and their projections onto the X and

Y axes are shown in figure 6. These plots also illustrate the three different categories into which the

pulses are classified. Their classification is done according to their time distribution (the projection

into the X axis)1. At the time of performing an analysis, pulses classified as good will have the highest

priority, and weak or saturated pulses will be discarded.

The NBPulse class has several attributes related to the pulse properties and several analysis

methods. The two most important attributes of the peak at the time of performing the time calibration

and the nanobeacon voltage optimization are the arrival time of the pulse and its mean ToT. Currently

there are two analysis methods implemented in the class. The first analysis method is a fast analysis

which consists on projecting the 2D distribution on the X axis, and selecting a window of about 10

bins around the bin with maximum content of the resulting distribution. The pulse arrival time in this

case is defined as the bin center of the bin with maximum content, and the mean ToT distribution

is estimated as the mean of the distribution obtained by projecting the selected window of the 2D

distribution onto the Y axis. Figure ?? left shows the result of applying this method to the histogram

in figure 6d. This analysis method is very fast and is useful for the tuning of the nanobeacon voltages,

which is based only on the mean ToT and does not use the pulse arrival time. A more sophisticated

1This classification is currently done in a quite artisanal way, but so far it works quite well

8

(a) good pulse (b) good pulse

(c) weak pulse (d) saturated pulse

Figure 6: Examples of nanobeacon pulse histograms produced by JPulseFinder and analyzed by the

NBPulse class.

9

Figure 7: Examples of the two analysis methods implemented in the NBPulse class to estimate the

pulse arrival time. The left plot shows the result of the fast analysis. In this case, the pulse arrival

time is estimated from the bin with maximum content of the time distribution. The right plot shows

the result of the more sophisticated method. In this case the pulse arrival time is the time at which

the fitted model has its maximum.

way of estimating the pulse arrival time consists on fitting the hit time distribution to a mathematical

model around the bin with maximum content, and to get the time at which the fitted model has its

maximum value. Currently the following mathematical model is implemented:

M(µg, σg, µl, σl, α) = G(µg, σg) + α · L(µl, σl). (5)

It is a two component model where G(µg, σg) represents a Gauss law , L(µl, σl) represents a Landau

law and α is a parameter that represents the mixing fraction of both components. An example of

this fit is shown in figure 7. This simple model is implemented using the ROOFIT libraries REF . This

libraries were chosen because they allow to implement easily more sophisticated models that could be

used to perform studies of water properties. Besides, the RooWorkspace class allows to easily store

all the information related to the fit and can be directly stored into a .root file.

10

4.1.2 The SUPERPMT class

The SUPERPMT class is very simple. It contains a JPMT and a NBPulse. It allows to associate the

analyzed pulses to a particular PMT in the detector.

4.1.3 The SUPERMODULE class

A particular characteristic of the different analyses involving nanobeacons is that they usually involve

at least two DOMs. A source DOM, and one or more target DOMs. The source DOM is the DOM

hosting the triggered nanobeacon. Usually, the emission time of the nanobeacon is estimated as the

arrival time of the pulse to one of the closest PMTs in the emitting DOM. This PMTs are also called

the reference PMTs. A target DOM is any DOM that contains PMTs sensitive to the nanobeacon

pulse.

A given DOM can act both as source and as target in the same analysis. When a DOM acts as a

source it can point to multiple target DOMs in the DU and similarly, it can be pointed to by multiple

source DOMs when it is acting as target. The SUPERMODULE class has been designed to implement

these relationships between a DOM and the rest of the DOMs in the DU.

A SUPERMODULE contains a JModule object and has a vector of reference SUPERPMTS (ie, those that

contain the NBPulses from its own nanobeacon detected by its own PMTs). It also contains a vector

of targets and a vector of sources. A target is a pair made up of a pointer to another SUPERMODULE

and a list of references to the corresponding target SUPERPMTS. Similarly, a source consists on a

pair formed by a pointer to a source SUPERMODULE a list of references to the corresponding target

SUPERPMTS. To clarify this, consider the SUPERMODULE corresponding to DOM in floor number 2.

A possible target of this SUPERMODULE is the SUPERMODULE in floor 3. The corresponding pair will

contain a pointer to the SUPERMODULE in floor 3, and an std::vector of references to the SUPERPMTs

corresponding to the pulses emitted by the nanobeacon in floor 2, and detected by the PMTs in floor

3. On the other hand, a possible source for the SUPERMODULE in floor 2 is the nanobeacon from

floor 1. The corresponding pair will consist on a pointer to the SUPERMODULE in floor 1, and an

std::vector containing references to the SUPERPMTs with the pulses emitted by the nanobeacon in

floor 1, and detected by the PMTs in floor 2.

The SUPERMODULE class contains methods to filter sources, targets and reference SUPERPMTs

according to the quality of their NBPulses.

11

The the initialization and a coherent setting of references between the different SUPERMODULE

objects in the DU are implemented in the NBRun class.

4.1.4 The NBRun class

The NBRun class intended to perform the analysis of a nanobeacon run for a given DU in a detector.

Therefore, a nanobeacon run is instantiated with a JDetector, a DU number and the path to a

file containing the nanobeacon pulses in the different PMTs from the detector, such as the ones

shown in figure 6. When the NBRun class is instantiated, it creates a vector of references to the

18 SUPERMODULEs in the DU. For each of them, it sets the vectors of possible sources and targets

accordingly. A program was included in the Tests directory to show that these references are set

coherently.

The NBRun class also contains the implementation of the different functions that read and analyze

the file containing the nanobeacon pulses.

4.2 JPulseFinder

4.2.1 What does it do?

JPulsefinder is the first program in the analysis chain. It uses a .detx file and a .root file from

a KM3NeT nano beacon run. It produces 2D histograms as the ones in figure 6 for all the possible

combinations of source nanobeacon and target PMTs in the DU and store them in a new .root file

for its posterior analysis.

The complete list of options that JInterDomCal can receive through the command line are the

following

-a <input detector file>

-f <path to input .root file>

-s <number of the DU to calibrate>

-o <name of out .root file>

-V <voltage of the nanobeacons>

12

-p <pulse period 16ns>

-d <overall delay 16ns>

-stagger <stagger 16ns>

The arguments -a , -f and -s are mandatory. Without specifying them, the program won’t run.

The option -o is not mandatory. In case that a name for the output file is not provided, a file named

out.root will be produced in the same path where the binary JPulsefinder is. The same situation

holds for the rest of the arguments, which are set to 0 by default. The last arguments are related to

how the nanobeacon runs are set, and are discussed below.

4.2.2 How does it work?

The settings of a nanobeacon run include several parameters that can be modified. In order prevent the

simultaneous arrival of the signal emitted by different nanobeacons at the same PMT, the nanobeacons

are not flashed at the same time. Instead, the nanobeacons are flashed in ascending order from the

bottom to the top floor of the string. Each pair of consecutive nanobeacons is flashed with a time

difference called stagger time. This iterative procedure is known as the staggering method.

These concepts are depicted in figure ??. This figure shows a hypothetical time distribution of

the hits detected by a PMT, where the contribution of two nanobeacons that are staggered by 100

ns is visible. In this example, each nanobeacon emits pulses with a period of 200 ns. If the stagger

time and the pulse period are chosen appropriately, the the contribution of each nanobeacon to the

hits recorded by the PMT can be isolated. The main difference of this hypothetical example with

respect to reality is that with the used settings, the PMTs detect only about one hit per nanobeacon

pulse, and the single pulses are not visible as they are represended in figure ??. This means that

in practice it is impossible to work with the signal produced by the single nanobeacon pulses. But

because the nanobeacons emit pulses periodically, this issue can be easily solved. If instead of plotting

the distribution of hit times one represents the distribution of the reminder of the hit time divided by

the pulse period (ie the modulo function), then the contribution of all the nanobeacon pulses would

be cumulated together in a peak with much more statistics. This is shown in figure ??, where the

contribution of the 4 pulses from figure ?? are gathered in a single peak for each nanobeacon, with

4 times more statistics.

13

0 100 200 300 400 500 600 700 800
hit time [ns]

0

50

100

150

200

250

300

350

400

nu
m
be

r o
f h

its

Nanobeacon A
Nanobeacon B

0 100 200 300 400 500 600 700 800
hit time % pulse period [ns]

0

50

100

150

200

250

300

350

400

nu
m
be
r o

f h
its

Nanobeacon A
Nanobeacon B

Figure 8: Hypothetical representation of the staggering technique, and how to gather the contribution

of all the nanobeacon pulses into a single peak with larger statistics. See the text.

The argument -stagger specifies the stagger time in units of 16 ns. Additionally there can be a

overall delay with respect to the beginning of a timeslice, which corresponds to the -d option. When

they are triggered, nanobeacons emit pulses with a period corresponding to the -p option (should be

given in units of 16 ns). With the current settings, -stagger = 3520 , -d = 0 and -p = 6520.

JPulseFinder is a modified version of the MBeaconLite program REF , which is suited for

the current framework. What it does is to use the stagger time and the pulse period to isolate the

contribution of each nanobeacon to each PMT as described in the hypothetical example above. It

saves each individual contribution to a separate 2D histogram where the distribution of the ToT

distribution of the hits is also represented in addition to the reminder of the hit time divided by the

pulse period. For each histogram, the time range can be defined by using the stagger and overall

delay times together with the positions of the nanobeacons and the PMTs in the detector. To fill

these histograms the program loops over all the time slices of the run. For each hit it reads its time

and ToT values and uses this information to fill the histograms for all the nanobeacons and the PMT

that recorded the hit. If the time range of the different histograms has been correctly defined, the

contribution of each hit will be visible only in the histogram for the nanobeacon that produced it. For

the rest of the histograms, the hit will be allocated in the underflow or overflow bins.

14

4.3 JInterDomCal

4.3.1 What does it do?

As figure ?? shows, the JInterDomCal program needs a .detx file as well as a .root file as inputs.

The detector file contains the positions of the PMTs and their t0s, and the .root file contains the 2D

histograms produced by JPulseFinder with the peaks observed by each PMT from each nanobeacon.

This program performs the inter-DOM time calibration and produces a new .detx file which is a copy

of the input .detx, but with the t0s of the PMTs modified following the procedure described in

section 2. Additionally, it can produce a .txt file with a comparison of the new and old detector

files, and a .root file containing extra information about the peaks used for the calibration.

The complete list of options that JInterDomCal can receive through the command line are the

following

-a <input detector file>

-f <path to input .root file>

-s <number of the DU to calibrate>

-x <name of out .detx>

-t <name of out .txt file>

-r <name of out .root file>

-u <up hemisphere pmts option>

-d <down hemisphere pmts option>

-n <maximum number of neighbors>

-l <peak analysis level>

The options -a , -f , -s are mandatory. Without these arguments the program won’t run. The

option -x is not mandatory. In case that a name for the output detector file is not provided, a

file named out.detx will be produced in the same path where the binary JInterDomCal is. The

15

Figure 9: Different choices for the arguments -u and -d

arguments -t , -r are optional. If they are not provided the corresponding files won’t be produced2.

The arguments -u , -d represent options to indicate JInterDomCal which PMTs (or which not)

to use in the upper and lower hemisphere to perform the calibration. The possible choices for these

arguments are given by different integer values and are summarized in figure 9. The argument -n allows

to limit the maximum distance between source and target DOMs when performing the calibration.

The default value is set to 2. Finally, the argument -l allows to choose how the nanobeacon pulses

are analyzed. It’s value is also an integer number, and currently two possibilities are implemented: -l

= 0 and -l = 1, which correspond respectively to the fast and more sophisticated analyses described

in section 4.1.1. The default option is set to 0.

4.3.2 How does it work?

The program is rather short. It’s main stages are the following:

1. Read input options

2The function that produces the optional .root file with the analysis info. is not yet implemented

16

2. Instantiation of a NBRun with the user options

3. Analysis of the NBRun according to the user options

4. Generate a new detector according to the results of the previous step

5. Write output

During the analysis of the run, the code selects pairs of DOMS that are as close as possible. For

each pair of DOMs, the code analyzes each possible combination of reference and target SUPERPMTs

that are classified as good. A correction factor is computed for each pair as described in section 2,

and the t0s of the detector are updated by using the median correction. Note that if one gets too

conservative with respect to the options -n , -u and -d some DOMs may not be calibrated.

4.4 JVoltageOptimizer

4.4.1 What does it do?

As figure ?? shows, JVoltageOptimizer uses the result of multiple nanobeacon runs analyzed by

JPulseFinder to find the optimal voltage at which each nanobeacon in the DU should be tuned.

It returns a .txt file with a list of nanobeacons and voltages. Optionally, it produces a .root

file containing some extra information related to the optimization process, and a second .root file

containing the pulses emitted by the nanobeacons tuned at the optimal voltage that can be used by

JInterDomCal to calibrate the DU. The command line arguments for JVoltageOptimizer are the

following:

-a <input detector file>

-f <list of paths to .root files>

-s <number of the DU to analyze>

-t <name of out .txt file>

-o <name of out .root file with extra info>

-c <name of out .root file for calibration>

17

-u <up hemisphere pmts option>

-d <down hemisphere pmts option>

-l <peak analysis level>

-n <maximum DOM distance>

-S <saturation ToT value>

The arguments -a , -f , -s , -u , -d , -l and -n have a similar meaning that those for

JInterDomCal. -t is for the name of the output file with the optimal nanobeacon voltages. By

default a file named out.txt is produced in the path where the binary JVoltageOptimizer is.

-o and -c are respectively the names of the optional output files with extra information about the

optimization process and for the calibration. If those arguments are not provided, the files won’t be

produced. The argument -S defines the nanobeacon saturation voltage, which by default is set to

26.4 ns. The optional .root file contains a tree with a branch for each nanobeacon.

4.4.2 How does it work?

The results of JVoltageOptimizer are also based on the analysis of the nanobeacon signal imple-

mented in the NBRun class. For each nanobeacon, the program finds the mean of the ToT distribution

for the hits produced in each of its reference PMTs, and the average of these values is stored to find

the optimal voltage. If the -o option is chosen, a tree is created which contains a branch for each

nanobeacon. Each event in the tree corresponds to a different run (voltage), and contains the average

ToT, its standard deviation and the voltage of the run. This tree allows to make plots as the ones in

figure 4.

5 Scripts

Two scripts are included in $JNanoBeacons/Scripts. The script Calibrate.sh runs the different

programs involved in the calibration chain, and the script Optimize Voltage.sh does the same for

the voltage optimization. In each case the user needs to specify the run number of the runs involved

in the analysis, as well as the different command line arguments. Both scripts download from irods

18

the .root files corresponding to the needed runs, and delete them after they have been analyzed.

The idea is to use these scripts to regularly perform the calibration and the voltage optimization every

time that a DU is deployed in the sea water.

6 Example output

Two example plots from the calibration chain, specifically from JInterDomCal.

45

50

55

60

65

t 0
 (n

s)

Deployment K40 calibration
Nanobeacon calibration

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0

10
-11

11
-12

12
-13

13
-14

14
-15

15
-16

16
-17

17
-18

DOM pairs

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

K4
0

t 0
 -

NB

t 0
 (n

s)

median difference K40 - NB
atmospheric muon offset

Figure 10: Comparison of the inter-DOM time offsets obtained with the nano-beacon analysis with

the K40 analysis prior to deployment of ORCA DU5. The upper panel shows the difference between

t0 difference for each pair of consecutive DOMs for both calibrations. The lower panel shows the

difference between both data sets in the upper panel. The green dashed line indicates the median

difference between both data sets. For the sake of comparison with other calibration procedures, the

red line has been added indicating the inter-DOM time offset for the same DU as found by the method

based on the reconstruction of atmospheric muons (https://elog.km3net.de/Calibration/139). These

results do not account for the systematic uncertainties in the position of the DOMs.

19

1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 9-1
0

10
-11

11
-12

12
-13

13
-14

14
-15

15
-16

16
-17

17
-18

DOM pairs

2.0

1.5

1.0

0.5

0.0

0.5

1.0

1.5

2.0

De
pl

oy
m

en
t K

40

t 0
 -

Na
no

be
ac

on

t 0
 (n

s)

DU2
DU3
DU4
DU5

Figure 11: Difference between the inter-DOM time calibration found off-shore with nano-beacons

and on-shore with the K40 analysis, for multiple detection units in the ORCA detector. The plot

corresponds with the lower panel from figure10

20

	Introduction
	Inter-DOM time calibration with nanobeacons
	A practical example

	Optimization of the nanobeacon voltages
	The Code
	The common classes
	The NBPulse class
	The SUPERPMT class
	The SUPERMODULE class
	The NBRun class

	JPulseFinder
	What does it do?
	How does it work?

	JInterDomCal
	What does it do?
	How does it work?

	JVoltageOptimizer
	What does it do?
	How does it work?

	Scripts
	Example output

