
JEquation
A typical equation looks like:

<key> = <value>

To be more specific, an equation consists of:

• left operand or ’key’;

• assignment marker, usually ’=’;

• right operand or ’value’; and

• end-of-line marker, usually ’\n’.

The JEquation class can be used to parse equations in a general way. It comprises the following data
members:

type member
JString key

char sep

JString value

These data members can be accessed via member methods getKey(), getSeparator() and getValue(),
respectively.

The various markers needed to parse an equation are defined in the auxiliary class JEquationParameters.
The list of data members of this class includes:

type member default comment
std::string sep "=" assignment
std::string eol "\n\r;" end-of-line
std::string div "./" division
std::string skip "#" skip line
char left ’(’ left bracket
char right ’)’ right bracket
std::string ws \t\n\v\f\r” white space

The values of the various data members can be defined at construction or via calls to the corresponding get

and set methods. The data members sep, eol, div, skip, and ws consists of a string of characters of which
each individually applies to its designated function. The characters contained in sep separates a key from its
value; those contained in eol determine the end of a line; and those contained in div separate different
tokens within a composite key. If the first character of a read line is contained in skip, the whole line is
ignored and the reading continues. Any character in ws is considered a white space; it will not contribute to
the reading of a key or value. The characters left and right refer to a possible list of values which should
together be treated. This makes it possible to parse equations that are contained within a value.

The parameters to parse an equation can be passed to the STL I/O operators using the class
JEquationFacet, e.g:

in.imbue(locale(in.getloc(), new JEquationFacet(JEquationparameters(..))));

1

where in is an std::istream object which ’owns’ the facet (the newly created facet will be deleted by the
owner at the appropriate time). Following this statement, the given std::istream object knows how to
parse an equation.

To read equations one-by-one, the following for-loop can be employed.

const JEquationFacet facet(JEquationParameters("=", ";\n", "./", "#"));

in.imbue(locale(in.getloc(), facet.clone()));

for (JEquation equation; in >> equation;) {

}

As a result, each equation is defined by a single line ending with a ’\n’ or ’;’ but not starting with a ’#’. To
select a genuine equation, the following condition should be checked within the for-loop.

if (facet.isSeparator(equation.getSeparator())) {

// some action

}

One can recursively subdivide a possible composite key as follows.

for (; facet.isDivision(equation.getSeparator()); ++i) {

equation.setEquation(facet);

}

The actual value of an equation is of type JString, so that further parsing can be done using the various
member methods of this class or those of its base class std::string. Of course, the value can also be
parsed using the std::istringstream class. It is interesting to note that the classes JProperties and
JRootStreamer make use of the JEquation class to parse equations. The first can be used to set up a
dictionary for ASCII I/O yourself and the latter uses the ROOT dictionary generated by rootcint for ASCII
I/O of a data structure.

2

