6 if [[ ! $ZSH_EVAL_CONTEXT =~ :
file$ ]]; 
then 
    7     echo "Auxiliary script for running the conjugate gradient fit in zsh." 
    8     echo "This script should be sourced by the steering script." 
   12 # This script contains auxiliary functions for running the conjugate gradient fit. 
   13 # It should be sourced by the steering script. 
   14 # The steering script should provide for the method getChi2 and set the fit parameters before calling method gradient. 
   15 # The method getChi2 should set the current value of chi2 to its first positional parameter. 
   16 # The fit parameters are defined by the associative array PARAMETERS. 
   17 # In this, each key corresponds to a valid zsh command that can be used for changing a specific fit parameter. 
   18 # The command should contain the wild card '%' which is repeatedly replaced by a value, referred to as step size. 
   19 # The associated value is used to evaluate the derivative of chi2 per unit step size of each fit parameter. 
   20 # These step sizes should be tuned beforehand to yield similar absolute values of the derivatives. 
   21 # To this end, the methods evaluate and gprint (in this order) can be used. 
   23 typeset -
a    CHI2                                # 
internal chi2 values; index [1] corresponds to best value
 
   24 typeset -
a    GRADIENT                            # derivative of 
chi2 per unit step size of each fit parameter
 
   25 let          
"EPSILON               =  5.0E-4"    # 
default maximal 
distance to minimum
 
   26 let          
"NUMBER_OF_ITERATIONS  =  1000"      # 
default maximum number of iterations
 
   29 if [[ -z 
"$DEBUG" ]]; 
then 
   35 # Auxiliary function to evaluate chi2 and gradient thereof at current position. 
   37 # The external method getChi2 is used to evaluate the chi2. 
   38 # The value corresponding to each key in the associative array PARAMETERS  
   39 # is used as unit step size for the evaluation of the derivative of the chi2. 
   40 # The results are stored in the internal variables CHI2[1] and GRADIENT, respectively. 
   50     for KEY 
in ${(
k)PARAMETERS}; 
do 
   51         if (( ${#KEY} > $WIDTH )); 
then 
   59     for KEY 
in ${(ko)PARAMETERS}; 
do 
   63         VALUE=$PARAMETERS[$KEY]
 
   65         if (( $VALUE != 0.0 )); 
then 
   87             GRADIENT[
$i]=$(($CHI2[2] - $CHI2[3]))
 
   93         if (( $DEBUG >= 3 )); 
then 
   94             printf 
"%-${WIDTH}s %12.5f %12.5f\n" $KEY $PARAMETERS[$KEY] $GRADIENT[
$i]
 
   97         let 
"V += $GRADIENT[$i]*$GRADIENT[$i]" 
  101     if (( $DEBUG >= 3 )); 
then 
  102         printf 
"%-${WIDTH}s %12s %12.5f\n" "|gradient|" "" $((sqrt($V)))
 
  108 # Move current position along gradient by given scaling factor of the unit step sizes. 
  110 # \param 1     scaling factor 
  114     if (( $1 > 0.0 )); 
then 
  118         for KEY 
in ${(ko)PARAMETERS}; 
do 
  131         let 
"i  = ${#GRADIENT}" 
  133         for KEY 
in ${(kO)PARAMETERS}; 
do 
  150 # The algorithm 
is based on the conjugate gradient method.
 
  151 # The position 
is moved to the optimal value and the 
final chi2 is returned.
 
  153 # If the option 
is one, the step sizes are fine-tuned according to the gradient of the 
chi2.
 
  154 # The value corresponding to each key 
in the associative array PARAMETERS 
is then  
  155 # multiplied by the corresponding element 
in GRADIENT and only the 
sign thereof 
is maintained.
 
  157 # \param 1     maximum number of extra steps
 
  158 # \param 2     variable containing 
final chi2 value on 
return 
  165     if (( ${#PARAMETERS} == 0 )); 
then 
  173     for (( i = 1; i <= ${#GRADIENT}; ++i)); 
do 
  174         G[
$i]=$((-1.0 * $GRADIENT[
$i]))
 
  179     for (( 
N = 0; $N != $NUMBER_OF_ITERATIONS; 
N += 1 )); 
do 
  181         if (( $DEBUG >= 3 )); 
then 
  182             printf 
"chi2[1]  %4d %12.5f\n" $N $CHI2[1]
 
  185         # minimise chi2 in direction of gradient 
  190         for (( DS = 1.0, M = 0 ; $DS > 1.0e-3; )); 
do 
  196             if (( $DEBUG >= 3 )); 
then 
  197                 printf 
"chi2[4]  %4d %12.5f %12.5e\n" $M $CHI2[4] $DS
 
  200             if (( $CHI2[4] < $CHI2[3] )); 
then 
  212             # if chi2 increases, try additional steps first to overcome possible hurdle, then try single step with reduced size 
  214             if (( $DS == 1.0 )); 
then 
  216                 if (( $M == 0 )); 
then 
  220                 if (( $M != $1 )); 
then 
  228                     for (( ; $M != 0; --M )); 
do                             
  238             if (( $CHI2[3] < $CHI2[2] )); 
then 
  240                 # final step based on parabolic interpolation through following points 
  242                 # X1 = -1 * DS  ->  CHI[2] 
  243                 # X2 =  0 * DS  ->  CHI[3] 
  244                 # X3 = +1 * DS  ->  CHI[4] 
  246                 let 
"F21 = $CHI2[3] - $CHI2[2]"   # 
F(X2) - 
F(X1)
 
  247                 let "F23 = $CHI2[3] - $CHI2[4]"   
# F(X2) - F(X3) 
  249                 let 
"XS  = 0.5 * ($F21 - $F23) / ($F23 + $F21)" 
  251                 move $((+1.0 * $XS * $DS))
 
  255                 if (( $CHI2[4] < $CHI2[3] )); 
then 
  261                     move $((-1.0 * $XS * $DS))
 
  266                 if (( $DEBUG >= 3 )); 
then 
  267                     printf "
chi2[3]  %4
d %12.5
f %12.5e\
n" $N $CHI2[3] $DS
 
  280         if (( fabs($CHI2[3] - $CHI2[1]) < $EPSILON * 0.5 * (fabs($CHI2[1]) + fabs($CHI2[3])) )); 
then 
  292         for (( i = 1; 
$i <= ${#GRADIENT}; ++i )); 
do 
  293             let 
"GG  +=  $G[$i]*$G[$i]" 
  294             let 
"DGG += ($GRADIENT[$i] + $G[$i]) * $GRADIENT[$i]" 
  297         if (( $GG == 0.0 )); 
then 
  301         let 
"GAM  = $DGG / $GG" 
  303         for (( i = 1; 
$i <= ${#GRADIENT}; ++i )); 
do 
  304             G[
$i]=$((-1.0 * $GRADIENT[
$i]))
 
  305             H[
$i]=$(($G[
$i] + $GAM * $H[
$i]))
 
  310     if (( $DEBUG >= 3 )); 
then 
  311         printf 
"chi2[1]  %4d %12.5f\n" $N $CHI2[1]
 
  319 # Additional fit function to be called after gradient. 
  321 # The algorithm is based on sorting the derivatives of the chi2 and  
  322 # moving the position one-by-one to the optimal value. 
  323 # The final chi2 is returned. 
  325 # \param 1     variable containing final chi2 value on return 
  334     for KEY 
in ${(
k)PARAMETERS}; 
do 
  335         if (( ${#KEY} > $WIDTH )); 
then 
  336             let 
"WIDTH = ${#KEY}" 
  341     for (( 
N = 0; $N != $NUMBER_OF_ITERATIONS; 
N += 1 )); 
do 
  351         for KEY 
in ${(ko)PARAMETERS}; 
do 
  353             VALUE=$PARAMETERS[$KEY]
 
  357             for K1 
in ${(
o)BUFFER}; 
do 
  363             for K1 
in ${(O)BUFFER}; 
do 
  367             for K1 
in ${(
o)BUFFER}; 
do 
  373             for K1 
in ${(O)BUFFER}; 
do 
  377             if (( $DEBUG >= 3 )); 
then 
  378                 printf 
"%-${WIDTH}s %12.5f %12.5f -> %+9.5f <- %+9.5f\n" $KEY $VALUE $CHI2[1] $(($CHI2[2] - $CHI2[1])) $(($CHI2[3] - $CHI2[1]))
 
  381             # map index to derivative of chi2 and maintain sign of step 
  383             if   (($CHI2[2] < $CHI2[1] && $CHI2[2] < $CHI2[3])); 
then 
  385                 G[
$i]=$(($CHI2[2] - $CHI2[1]))
 
  389             elif (($CHI2[3] < $CHI2[1] && $CHI2[3] < $CHI2[2])); 
then 
  391                 G[
$i]=$(($CHI2[3] - $CHI2[1]))
 
  395 #           elif (($CHI2[3] - $CHI2[2] > 0.5*($CHI2[2] + $CHI2[3]) - $CHI2[1])); then 
  397 #               G[$i]=$(($CHI2[2] - $CHI2[1])) 
  401 #           elif (($CHI2[2] - $CHI2[3] > 0.5*($CHI2[2] + $CHI2[3]) - $CHI2[1])); then 
  403 #               G[$i]=$(($CHI2[3] - $CHI2[1])) 
  412         if (( ${#G} == 0 )); 
then 
  417         # sort derivatives of chi2 and optimise position one-by-one 
  421         for i VALUE 
in `printf 
"%d %12.3e\n" ${(kv)G} | sort -g -k2`; 
do 
  423             KEY=${${(ko)PARAMETERS}[
$i]}
 
  425             BUFFER=(${(s/;/)${(
Q)KEY}})
 
  429             let 
"DS  = $GRADIENT[$i] * $PARAMETERS[$KEY]" 
  431             if (($DEBUG >= 3)); 
then 
  432                 printf 
"%-${WIDTH}s %12.5f %12.5f\n" $KEY $DS $G[
$i]
 
  437             for (( 
n = 1; ; ++
n )); 
do 
  439                 for K1 
in ${(
o)BUFFER}; 
do 
  445                 if (( $DEBUG >= 3 )); 
then 
  446                     printf 
"chi2[4]  %4d %12.5f\n" $n $CHI2[4]
 
  449                 if (( $CHI2[4] < $CHI2[3] )); 
then 
  456                 for K1 
in ${(O)BUFFER}; 
do 
  460                 if (( $CHI2[3] < $CHI2[2] )); 
then 
  462                     # final step based on parabolic interpolation through following points 
  464                     # X1 = -1 * DS  ->  CHI[2] 
  465                     # X2 =  0 * DS  ->  CHI[3] 
  466                     # X3 = +1 * DS  ->  CHI[4] 
  468                     let 
"F21 = $CHI2[3] - $CHI2[2]"   # 
F(X2) - 
F(X1)
 
  469                     let "F23 = $CHI2[3] - $CHI2[4]"   
# F(X2) - F(X3) 
  471                     let 
"XS  = 0.5 * ($F21 - $F23) / ($F23 + $F21)" 
  473                     for K1 
in ${(
o)BUFFER}; 
do 
  479                     if (( $CHI2[4] < $CHI2[3] )); 
then 
  485                         for K1 
in ${(O)BUFFER}; 
do 
  491                 if (( $DEBUG >= 3 )); 
then 
  492                     printf 
"chi2[3]  %4d %12.5f\n" $n $CHI2[3]
 
  501         if (( fabs($CHI2[2] - $CHI2[1]) < $EPSILON * 0.5 * (fabs($CHI2[1]) + fabs($CHI2[2])) )); 
then 
  509     if (( $DEBUG >= 3 )); 
then 
  510         printf 
"chi2[1]  %4d %12.5f\n" $N $CHI2[1]
 
set Main(RunControl, Responder) is
 
then fatal No hydrophone data file $HYDROPHONE_TXT fi sort gr k
 
Q(UTCMax_s-UTCMin_s)-livetime_s
 
then usage $script[< detector identifier >< run range >]< QA/QCfile > nExample script to produce data quality plots nWhen a detector identifier and run range are data are downloaded from the database nand subsequently stored in the given QA QC file
 
std::vector< T >::difference_type distance(typename std::vector< T >::const_iterator first, typename PhysicsEvent::const_iterator< T > second)
Specialisation of STL distance. 
 
o $QUALITY_ROOT d $DEBUG!CHECK_EXIT_CODE JPlot1D f
 
then JShowerPostfit f $INPUT_FILE o $OUTPUT_FILE N
 
static const double H
Planck constant [eV s]. 
 
*fatal Wrong number of arguments esac JCookie sh typeset Z DETECTOR typeset Z SOURCE_RUN typeset Z TARGET_RUN set_variable PARAMETERS_FILE $WORKDIR parameters
 
then fatal Wrong number of arguments fi JConvertDetectorFormat a o
 
skip elif((BINFRAC< 1.0))
 
then JMuonMCEvt f $INPUT_FILE o $INTERMEDIATE_FILE d
 
then if[[!-f $DETECTOR]] then JDetector sh $DETECTOR fi cat $WORKDIR trigger_parameters txt<< EOFtrigger3DMuon.enabled=1;trigger3DMuon.numberOfHits=5;trigger3DMuon.gridAngle_deg=1;ctMin=0.0;TMaxLocal_ns=15.0;EOF set_variable TRIGGEREFFICIENCY_TRIGGERED_EVENTS_ONLY INPUT_FILES=() for((i=1;$i<=$NUMBER_OF_RUNS;++i));do JSirene.sh $DETECTOR $JPP_DATA/genhen.km3net_wpd_V2_0.evt.gz $WORKDIR/sirene_ ${i}.root JTriggerEfficiency.sh $DETECTOR $DETECTOR $WORKDIR/sirene_ ${i}.root $WORKDIR/trigger_efficiency_ ${i}.root $WORKDIR/trigger_parameters.txt $JPP_DATA/PMT_parameters.txt INPUT_FILES+=($WORKDIR/trigger_efficiency_ ${i}.root) done for ANGLE_DEG in $ANGLES_DEG[*];do set_variable SIGMA_NS 3.0 set_variable OUTLIERS 3 set_variable OUTPUT_FILE $WORKDIR/matrix\[${ANGLE_DEG}\deg\].root $JPP_DIR/examples/JReconstruction-f"$INPUT_FILES[*]"-o $OUTPUT_FILE-S ${SIGMA_NS}-A ${ANGLE_DEG}-O ${OUTLIERS}-d ${DEBUG}--!fiif[[$OPTION=="plot"]];then if((0));then for H1 in h0 h1;do JPlot1D-f"$WORKDIR/matrix["${^ANGLES_DEG}" deg].root:${H1}"-y"1 2e3"-Y-L TR-T""-\^"number of events [a.u.]"-> o chi2
 
esac typeset A BUFFER $JPP_DIR examples JAcoustics JCreep f $INPUT_FILE BUFFER
 
int sign(const T &value)
Get sign of value. 
 
double getChi2(const double P)
Get chi2 corresponding to given probability. 
 
then fatal Wrong number of arguments fi set_variable DETECTOR $argv[1] set_variable INPUT_FILE $argv[2] eval JPrintDetector a $DETECTOR O IDENTIFIER eval JPrintDetector a $DETECTOR O SUMMARY JAcoustics sh $DETECTOR_ID source JAcousticsToolkit sh CHECK_EXIT_CODE typeset A EMITTERS get_tripods $WORKDIR tripod txt EMITTERS get_transmitters $WORKDIR transmitter txt EMITTERS for EMITTER in
 
source $JPP_DIR setenv csh $JPP_DIR &dev null eval JShellParser o a A
 
#define DEBUG(A)
Message macros.