6 if [[ ! $ZSH_EVAL_CONTEXT =~ :
file$ ]];
then
7 echo "Auxiliary script for running the conjugate gradient fit in zsh."
8 echo "This script should be sourced by the steering script."
12 # This script contains auxiliary functions for running the conjugate gradient fit.
13 # It should be sourced by the steering script.
14 # The steering script should provide for the method getChi2 and set the fit parameters before calling method gradient.
15 # The method getChi2 should set the current value of chi2 to its first positional parameter.
16 # The fit parameters are defined by the associative array PARAMETERS.
17 # In this, each key corresponds to a valid zsh command that can be used for changing a specific fit parameter.
18 # The command should contain the wild card '%' which is repeatedly replaced by a value, referred to as step size.
19 # The associated value is used to evaluate the derivative of chi2 per unit step size of each fit parameter.
20 # These step sizes should be tuned beforehand to yield similar absolute values of the derivatives.
21 # To this end, the methods evaluate and gprint (in this order) can be used.
23 typeset -
a CHI2 #
internal chi2 values; index [1] corresponds to best value
24 typeset -
a GRADIENT # derivative of
chi2 per unit step size of each fit parameter
25 let
"EPSILON = 5.0E-4" #
default maximal
distance to minimum
26 let
"NUMBER_OF_ITERATIONS = 1000" #
default maximum number of iterations
29 if [[ -z
"$DEBUG" ]];
then
35 # Auxiliary function to evaluate chi2 and gradient thereof at current position.
37 # The external method getChi2 is used to evaluate the chi2.
38 # The value corresponding to each key in the associative array PARAMETERS
39 # is used as unit step size for the evaluation of the derivative of the chi2.
40 # The results are stored in the internal variables CHI2[1] and GRADIENT, respectively.
50 for KEY
in ${(
k)PARAMETERS};
do
51 if (( ${#KEY} > $WIDTH ));
then
59 for KEY
in ${(ko)PARAMETERS};
do
63 VALUE=$PARAMETERS[$KEY]
65 if (( $VALUE != 0.0 ));
then
87 GRADIENT[
$i]=$(($CHI2[2] - $CHI2[3]))
93 if (( $DEBUG >= 3 ));
then
94 printf
"%-${WIDTH}s %12.5f %12.5f\n" $KEY $PARAMETERS[$KEY] $GRADIENT[
$i]
97 let
"V += $GRADIENT[$i]*$GRADIENT[$i]"
101 if (( $DEBUG >= 3 ));
then
102 printf
"%-${WIDTH}s %12s %12.5f\n" "|gradient|" "" $((sqrt($V)))
108 # Move current position along gradient by given scaling factor of the unit step sizes.
110 # \param 1 scaling factor
114 if (( $1 > 0.0 ));
then
118 for KEY
in ${(ko)PARAMETERS};
do
131 let
"i = ${#GRADIENT}"
133 for KEY
in ${(kO)PARAMETERS};
do
150 # The algorithm
is based on the conjugate gradient method.
151 # The position
is moved to the optimal value and the
final chi2 is returned.
153 # If the option
is one, the step sizes are fine-tuned according to the gradient of the
chi2.
154 # The value corresponding to each key
in the associative array PARAMETERS
is then
155 # multiplied by the corresponding element
in GRADIENT and only the
sign thereof
is maintained.
157 # \param 1 maximum number of extra steps
158 # \param 2 variable containing
final chi2 value on
return
165 if (( ${#PARAMETERS} == 0 ));
then
173 for (( i = 1; i <= ${#GRADIENT}; ++i));
do
174 G[
$i]=$((-1.0 * $GRADIENT[
$i]))
179 for ((
N = 0; $N != $NUMBER_OF_ITERATIONS;
N += 1 ));
do
181 if (( $DEBUG >= 3 ));
then
182 printf
"chi2[1] %4d %12.5f\n" $N $CHI2[1]
185 # minimise chi2 in direction of gradient
190 for (( DS = 1.0, M = 0 ; $DS > 1.0e-3; ));
do
196 if (( $DEBUG >= 3 ));
then
197 printf
"chi2[4] %4d %12.5f %12.5e\n" $M $CHI2[4] $DS
200 if (( $CHI2[4] < $CHI2[3] ));
then
212 # if chi2 increases, try additional steps first to overcome possible hurdle, then try single step with reduced size
214 if (( $DS == 1.0 ));
then
216 if (( $M == 0 ));
then
220 if (( $M != $1 ));
then
228 for (( ; $M != 0; --M ));
do
238 if (( $CHI2[3] < $CHI2[2] ));
then
240 # final step based on parabolic interpolation through following points
242 # X1 = -1 * DS -> CHI[2]
243 # X2 = 0 * DS -> CHI[3]
244 # X3 = +1 * DS -> CHI[4]
246 let
"F21 = $CHI2[3] - $CHI2[2]" #
F(X2) -
F(X1)
247 let "F23 = $CHI2[3] - $CHI2[4]"
# F(X2) - F(X3)
249 let
"XS = 0.5 * ($F21 - $F23) / ($F23 + $F21)"
251 move $((+1.0 * $XS * $DS))
255 if (( $CHI2[4] < $CHI2[3] ));
then
261 move $((-1.0 * $XS * $DS))
266 if (( $DEBUG >= 3 ));
then
267 printf "
chi2[3] %4
d %12.5
f %12.5e\
n" $N $CHI2[3] $DS
280 if (( fabs($CHI2[3] - $CHI2[1]) < $EPSILON * 0.5 * (fabs($CHI2[1]) + fabs($CHI2[3])) ));
then
292 for (( i = 1;
$i <= ${#GRADIENT}; ++i ));
do
293 let
"GG += $G[$i]*$G[$i]"
294 let
"DGG += ($GRADIENT[$i] + $G[$i]) * $GRADIENT[$i]"
297 if (( $GG == 0.0 ));
then
301 let
"GAM = $DGG / $GG"
303 for (( i = 1;
$i <= ${#GRADIENT}; ++i ));
do
304 G[
$i]=$((-1.0 * $GRADIENT[
$i]))
305 H[
$i]=$(($G[
$i] + $GAM * $H[
$i]))
310 if (( $DEBUG >= 3 ));
then
311 printf
"chi2[1] %4d %12.5f\n" $N $CHI2[1]
319 # Additional fit function to be called after gradient.
321 # The algorithm is based on sorting the derivatives of the chi2 and
322 # moving the position one-by-one to the optimal value.
323 # The final chi2 is returned.
325 # \param 1 variable containing final chi2 value on return
334 for KEY
in ${(
k)PARAMETERS};
do
335 if (( ${#KEY} > $WIDTH ));
then
336 let
"WIDTH = ${#KEY}"
341 for ((
N = 0; $N != $NUMBER_OF_ITERATIONS;
N += 1 ));
do
351 for KEY
in ${(ko)PARAMETERS};
do
353 VALUE=$PARAMETERS[$KEY]
357 for K1
in ${(
o)BUFFER};
do
363 for K1
in ${(O)BUFFER};
do
367 for K1
in ${(
o)BUFFER};
do
373 for K1
in ${(O)BUFFER};
do
377 if (( $DEBUG >= 3 ));
then
378 printf
"%-${WIDTH}s %12.5f %12.5f -> %+9.5f <- %+9.5f\n" $KEY $VALUE $CHI2[1] $(($CHI2[2] - $CHI2[1])) $(($CHI2[3] - $CHI2[1]))
381 # map index to derivative of chi2 and maintain sign of step
383 if (($CHI2[2] < $CHI2[1] && $CHI2[2] < $CHI2[3]));
then
385 G[
$i]=$(($CHI2[2] - $CHI2[1]))
389 elif (($CHI2[3] < $CHI2[1] && $CHI2[3] < $CHI2[2]));
then
391 G[
$i]=$(($CHI2[3] - $CHI2[1]))
395 # elif (($CHI2[3] - $CHI2[2] > 0.5*($CHI2[2] + $CHI2[3]) - $CHI2[1])); then
397 # G[$i]=$(($CHI2[2] - $CHI2[1]))
401 # elif (($CHI2[2] - $CHI2[3] > 0.5*($CHI2[2] + $CHI2[3]) - $CHI2[1])); then
403 # G[$i]=$(($CHI2[3] - $CHI2[1]))
412 if (( ${#G} == 0 ));
then
417 # sort derivatives of chi2 and optimise position one-by-one
421 for i VALUE
in `printf
"%d %12.3e\n" ${(kv)G} | sort -g -k2`;
do
423 KEY=${${(ko)PARAMETERS}[
$i]}
425 BUFFER=(${(s/;/)${(
Q)KEY}})
429 let
"DS = $GRADIENT[$i] * $PARAMETERS[$KEY]"
431 if (($DEBUG >= 3));
then
432 printf
"%-${WIDTH}s %12.5f %12.5f\n" $KEY $DS $G[
$i]
437 for ((
n = 1; ; ++
n ));
do
439 for K1
in ${(
o)BUFFER};
do
445 if (( $DEBUG >= 3 ));
then
446 printf
"chi2[4] %4d %12.5f\n" $n $CHI2[4]
449 if (( $CHI2[4] < $CHI2[3] ));
then
456 for K1
in ${(O)BUFFER};
do
460 if (( $CHI2[3] < $CHI2[2] ));
then
462 # final step based on parabolic interpolation through following points
464 # X1 = -1 * DS -> CHI[2]
465 # X2 = 0 * DS -> CHI[3]
466 # X3 = +1 * DS -> CHI[4]
468 let
"F21 = $CHI2[3] - $CHI2[2]" #
F(X2) -
F(X1)
469 let "F23 = $CHI2[3] - $CHI2[4]"
# F(X2) - F(X3)
471 let
"XS = 0.5 * ($F21 - $F23) / ($F23 + $F21)"
473 for K1
in ${(
o)BUFFER};
do
479 if (( $CHI2[4] < $CHI2[3] ));
then
485 for K1
in ${(O)BUFFER};
do
491 if (( $DEBUG >= 3 ));
then
492 printf
"chi2[3] %4d %12.5f\n" $n $CHI2[3]
501 if (( fabs($CHI2[2] - $CHI2[1]) < $EPSILON * 0.5 * (fabs($CHI2[1]) + fabs($CHI2[2])) ));
then
509 if (( $DEBUG >= 3 ));
then
510 printf
"chi2[1] %4d %12.5f\n" $N $CHI2[1]
set Main(RunControl, Responder) is
then fatal No hydrophone data file $HYDROPHONE_TXT fi sort gr k
Q(UTCMax_s-UTCMin_s)-livetime_s
then usage $script[< detector identifier >< run range >]< QA/QCfile > nExample script to produce data quality plots nWhen a detector identifier and run range are data are downloaded from the database nand subsequently stored in the given QA QC file
std::vector< T >::difference_type distance(typename std::vector< T >::const_iterator first, typename PhysicsEvent::const_iterator< T > second)
Specialisation of STL distance.
o $QUALITY_ROOT d $DEBUG!CHECK_EXIT_CODE JPlot1D f
then JShowerPostfit f $INPUT_FILE o $OUTPUT_FILE N
static const double H
Planck constant [eV s].
*fatal Wrong number of arguments esac JCookie sh typeset Z DETECTOR typeset Z SOURCE_RUN typeset Z TARGET_RUN set_variable PARAMETERS_FILE $WORKDIR parameters
then fatal Wrong number of arguments fi JConvertDetectorFormat a o
skip elif((BINFRAC< 1.0))
then JMuonMCEvt f $INPUT_FILE o $INTERMEDIATE_FILE d
then if[[!-f $DETECTOR]] then JDetector sh $DETECTOR fi cat $WORKDIR trigger_parameters txt<< EOFtrigger3DMuon.enabled=1;trigger3DMuon.numberOfHits=5;trigger3DMuon.gridAngle_deg=1;ctMin=0.0;TMaxLocal_ns=15.0;EOF set_variable TRIGGEREFFICIENCY_TRIGGERED_EVENTS_ONLY INPUT_FILES=() for((i=1;$i<=$NUMBER_OF_RUNS;++i));do JSirene.sh $DETECTOR $JPP_DATA/genhen.km3net_wpd_V2_0.evt.gz $WORKDIR/sirene_ ${i}.root JTriggerEfficiency.sh $DETECTOR $DETECTOR $WORKDIR/sirene_ ${i}.root $WORKDIR/trigger_efficiency_ ${i}.root $WORKDIR/trigger_parameters.txt $JPP_DATA/PMT_parameters.txt INPUT_FILES+=($WORKDIR/trigger_efficiency_ ${i}.root) done for ANGLE_DEG in $ANGLES_DEG[*];do set_variable SIGMA_NS 3.0 set_variable OUTLIERS 3 set_variable OUTPUT_FILE $WORKDIR/matrix\[${ANGLE_DEG}\deg\].root $JPP_DIR/examples/JReconstruction-f"$INPUT_FILES[*]"-o $OUTPUT_FILE-S ${SIGMA_NS}-A ${ANGLE_DEG}-O ${OUTLIERS}-d ${DEBUG}--!fiif[[$OPTION=="plot"]];then if((0));then for H1 in h0 h1;do JPlot1D-f"$WORKDIR/matrix["${^ANGLES_DEG}" deg].root:${H1}"-y"1 2e3"-Y-L TR-T""-\^"number of events [a.u.]"-> o chi2
esac typeset A BUFFER $JPP_DIR examples JAcoustics JCreep f $INPUT_FILE BUFFER
int sign(const T &value)
Get sign of value.
double getChi2(const double P)
Get chi2 corresponding to given probability.
then fatal Wrong number of arguments fi set_variable DETECTOR $argv[1] set_variable INPUT_FILE $argv[2] eval JPrintDetector a $DETECTOR O IDENTIFIER eval JPrintDetector a $DETECTOR O SUMMARY JAcoustics sh $DETECTOR_ID source JAcousticsToolkit sh CHECK_EXIT_CODE typeset A EMITTERS get_tripods $WORKDIR tripod txt EMITTERS get_transmitters $WORKDIR transmitter txt EMITTERS for EMITTER in
source $JPP_DIR setenv csh $JPP_DIR &dev null eval JShellParser o a A
#define DEBUG(A)
Message macros.