1#ifndef __JCALIBRATE_JGANDALFK40__
2#define __JCALIBRATE_JGANDALFK40__
42 using KM3NETDAQ::NUMBER_OF_PMTS;
102 public std::map<pair_type, std::vector<rate_type> >
110 public JMath<JParameter_t>
322 void setRange(
const double xmin,
const double xmax)
324 const double x =
get();
391 operator double()
const
420 return in >>
object.value;
435 out <<
FIXED(12,6) <<
object.get() <<
' '
436 << setw(5) << (
object.isFixed() ?
"fixed" :
" ") <<
' ';
439 out <<
"[" <<
FIXED(12,6) <<
object.range.getLowerLimit() <<
"," <<
FIXED(12,6) <<
object.range.getUpperLimit() <<
"]";
483 parameters.
QE .
set(1.0);
485 parameters.
t0 .
set(0.0);
486 parameters.
bg .
set(0.0);
513 if (
QE .isFree()) {
QE .
set(parameters.
QE); }
515 if (
t0 .isFree()) {
t0 .
set(parameters.
t0); }
516 if (
bg .isFree()) {
bg .
set(parameters.
bg); }
527 return ((
QE. isFree() ? 1 : 0) +
542 if (!(this->*p).isFree()) {
596 out <<
"QE " <<
FIXED(7,3) <<
object.QE << endl;
597 out <<
"TTS " <<
FIXED(7,3) <<
object.TTS << endl;
598 out <<
"t0 " <<
FIXED(7,3) <<
object.t0 << endl;
599 out <<
"bg " <<
FIXED(7,3) <<
object.bg << endl;
674 out <<
"Rate [Hz] " <<
FIXED(12,6) <<
object.R << endl;
675 out <<
"p1 " <<
FIXED(12,6) <<
object.p1 << endl;
676 out <<
"p2 " <<
FIXED(12,6) <<
object.p2 << endl;
677 out <<
"p3 " <<
FIXED(12,6) <<
object.p3 << endl;
678 out <<
"p4 " <<
FIXED(12,6) <<
object.p4 << endl;
679 out <<
"cc " <<
FIXED(12,6) <<
object.cc << endl;
680 out <<
"bc " <<
FIXED(12,6) <<
object.bc << endl;
721 parameters.
R .
set(18.460546);
722 parameters.
p1.
set( 3.0767);
723 parameters.
p2.
set(-1.2078);
724 parameters.
p3.
set( 0.9905);
725 parameters.
p4.
set( 0.9379);
726 parameters.
cc.
set( 0.0);
727 parameters.
bc.
set( 0.0);
740 return ((
R .isFree() ? 1 : 0) +
758 if (!(this->*p).isFree()) {
799 const double ct2 = ct * ct;
837 out << static_cast<const JK40Parameters&>(
object);
839 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
840 out <<
"PMT[" <<
FILL(2,
'0') << i <<
FILL() <<
"]." <<
object.parameters[i].status << endl <<
object.parameters[i];
901 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
905 for (JTDC_t::const_iterator i = TDC.first; i != TDC.second; ++i) {
909 this->parameters[i->second].t0.fix();
913 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
914 this->parameters[i].t0.fix();
938 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
972 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
982 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
1006 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
1018 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
1056 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
1085 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
1111 for (
int i = 0; i != NUMBER_OF_PMTS; ++i) {
1129 for (
int i = 0; i != pmt; ++i) {
1183 pair.second == this->index ? +this->parameters[
pair.first ].t0() :
1184 this->parameters[
pair.first].t0() - this->parameters[
pair.second].t0());
1187 this->parameters[
pair.second].TTS() * this->parameters[
pair.second].TTS() +
1188 this->getSigmaK40() * this->getSigmaK40());
1210 using namespace std;
1211 using namespace JPP;
1218 const double R2 = gauss.getValue(dt_ns);
1232 using namespace std;
1233 using namespace JPP;
1253 using namespace std;
1255 out <<
"Module " << setw(10) <<
object.getID() << endl;
1256 out <<
"option " <<
object.option << endl;
1257 out <<
"index " <<
object.index << endl;
1259 out << static_cast<const JModel_t&>(
object);
1298 using namespace JPP;
1312 using namespace std;
1313 using namespace JPP;
1324 double xmax = numeric_limits<double>::lowest();
1325 double xmin = numeric_limits<double>::max();
1329 for (data_type::const_iterator ix = data.begin(); ix != data.end(); ++ix) {
1336 ndf += ix->second.size();
1338 for (
const rate_type& iy : ix->second) {
1348 return { 0.0, ndf };
1351 for (
int pmt = 0; pmt != NUMBER_OF_PMTS; ++pmt) {
1360 double precessor = numeric_limits<double>::max();
1402 if (
debug >= debug_t) {
1413 for (
int pmt = 0; pmt != NUMBER_OF_PMTS; ++pmt) {
1423 for (
size_t i = 0; i != N; ++i) {
1429 h[i] = 1.0 / sqrt(
V(i,i));
1434 for (
size_t i = 0; i != N; ++i) {
1435 for (
size_t j = 0; j != i; ++j) {
1436 V(j,i) *=
h[i] *
h[j];
1441 for (
size_t i = 0; i != N; ++i) {
1447 for (
size_t col = 0; col != N; ++col) {
1454 catch (
const exception&
error) {
1456 ERROR(
"JGandalf: " <<
error.what() << endl <<
V << endl);
1463 const double factor = 2.0;
1475 for (
int pmt = 0; pmt != NUMBER_OF_PMTS; ++pmt) {
1485 return { precessor /
estimator->getRho(1.0), ndf };
1495 static constexpr double PIVOT = std::numeric_limits<double>::epsilon();
1514 using namespace std;
1515 using namespace JPP;
1531 R = model.getIndex(&JK40Parameters_t::R);
1532 p1 = model.getIndex(&JK40Parameters_t::p1);
1533 p2 = model.getIndex(&JK40Parameters_t::p2);
1534 p3 = model.getIndex(&JK40Parameters_t::p3);
1535 p4 = model.getIndex(&JK40Parameters_t::p4);
1536 cc = model.getIndex(&JK40Parameters_t::cc);
1537 bc = model.getIndex(&JK40Parameters_t::bc);
1554 I_t(
const JModel& model,
const int pmt) :
1560 const int index = model.getIndex(pmt);
1564 if (model.parameters[pmt].QE .isFree()) { QE = index + N; ++N; }
1565 if (model.parameters[pmt].TTS.isFree()) { TTS = index + N; ++N; }
1566 if (model.parameters[pmt].t0 .isFree()) { t0 = index + N; ++N; }
1567 if (model.parameters[pmt].bg .isFree()) { bg = index + N; ++N; }
1581 for (data_type::const_iterator ix = data.begin(); ix != data.end(); ++ix) {
1590 const JGauss gauss(real.t0, real.sigma, real.signal);
1598 for (
const rate_type& iy : ix->second) {
1600 const double R2 = gauss.getValue (iy.
dt_ns);
1601 const JGauss& R2p = gauss.getGradient(iy.
dt_ns);
1603 const double R = real.bc + real.background +
R1 * (real.cc + R2);
1628 for (buffer_type::const_iterator row = buffer.begin(); row != buffer.end(); ++row) {
1630 Y[row->first] += row->second;
1632 V[row->first][row->first] += row->second * row->second;
1634 for (buffer_type::const_iterator col = buffer.begin(); col != row; ++col) {
1635 V[row->first][col->first] += row->second * col->second;
1636 V[col->first][row->first] =
V[row->first][col->first];
1652 using namespace std;
1661 catch (
const exception&
error) {}
1663#define SQRT(X) (X >= 0.0 ? sqrt(X) : std::numeric_limits<double>::max())
1675 for (
int pmt = 0; pmt != NUMBER_OF_PMTS; ++pmt) {
JDAQPMTIdentifier PMT
Command line options.
KM3NeT DAQ constants, bit handling, etc.
#define THROW(JException_t, A)
Marco for throwing exception with std::ostream compatible message.
Maximum likelihood estimator (M-estimators).
Base class for data structures with artithmetic capabilities.
General purpose messaging.
#define DEBUG(A)
Message macros.
Data structure for optical module.
Auxiliary class to define a range between two values.
std::shared_ptr< JMEstimator > estimator_type
static constexpr double LAMBDA_MIN
minimal value control parameter
static constexpr double LAMBDA_DOWN
multiplication factor control parameter
result_type operator()(const data_type &data)
Fit.
void seterr(const data_type &data)
Set errors.
static constexpr double LAMBDA_MAX
maximal value control parameter
static constexpr double LAMBDA_UP
multiplication factor control parameter
static constexpr double EPSILON
maximal distance to minimum.
JFit(const int option, const int debug)
Constructor.
void evaluate(const data_type &data)
Evaluation of fit.
static constexpr int MAXIMUM_ITERATIONS
maximal number of iterations.
static constexpr double PIVOT
minimal value diagonal element of matrix
estimator_type estimator
M-Estimator function.
Auxiliary class for fit parameter with optional limits.
JParameter_t & mul(const double factor)
Scale parameter.
void set(const double value)
Set value.
void fix()
Fix current value.
JParameter_t & sub(const JParameter_t ¶meter)
Subtract parameter.
JParameter_t & operator=(double value)
Assignment operator.
bool isFree() const
Check if parameter is free.
friend std::ostream & operator<<(std::ostream &out, const JParameter_t &object)
Write parameter to output stream.
friend std::istream & operator>>(std::istream &in, JParameter_t &object)
Read parameter from input stream.
JParameter_t & div(const double factor)
Scale parameter.
JParameter_t & mul(const JParameter_t &first, const JParameter_t &second)
Scale parameter.
double operator()() const
Type conversion operator.
void set()
Set current value.
JParameter_t(const double value, const range_type &range=range_type::DEFAULT_RANGE())
Constructor.
void setRange(const double xmin, const double xmax)
Set range.
JParameter_t & negate()
Negate parameter.
JParameter_t()
Default constructor.
bool atLimit(const double precision) const
Check if parameter is at limit;.
JTOOLS::JRange< double > range_type
Type definition for range of parameter values.
double getDerivative() const
Get derivative of value.
JParameter_t & add(const JParameter_t ¶meter)
Add parameter.
void fix(const double value)
Fix value.
double get() const
Get value.
bool isBound() const
Check if parameter is bound.
bool isFixed() const
Check if parameter is fixed.
Data structure for a composite optical module.
Exception for accessing a value in a collection that is outside of its range.
double getDot(const JNeutrinoDirection &first, const JNeutrinoDirection &second)
Dot product.
Auxiliary classes and methods for PMT calibration.
static const int INVALID_INDEX
invalid index
@ FIT_PMTS_QE_FIXED_t
fit parameters of PMTs with QE fixed
@ FIT_PMTS_AND_ANGULAR_DEPENDENCE_t
fit parameters of PMTs and angular dependence of K40 rate
@ FIT_MODEL_t
fit parameters of K40 rate and TTSs of PMTs
@ FIT_PMTS_AND_BACKGROUND_t
fit parameters of PMTs and background
@ FIT_PMTS_t
fit parameters of PMTs
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
Auxiliary data structure for sequence of same character.
Auxiliary data structure for floating point format specification.
PMT combinatorics for optical module.
Fit parameters for two-fold coincidence rate due to K40.
JParameter_t bc
constant background
JParameter_t R
maximal coincidence rate [Hz]
JParameter_t p1
1st order angle dependence coincidence rate
JParameter_t p2
2nd order angle dependence coincidence rate
friend std::ostream & operator<<(std::ostream &out, const JK40Parameters_t &object)
Write model parameters to output stream.
JParameter_t p3
3rd order angle dependence coincidence rate
const JK40Parameters_t & getK40Parameters() const
Get K40 parameters.
JParameter_t p4
4th order angle dependence coincidence rate
JParameter_t cc
fraction of signal correlated background
JK40Parameters_t()
Default constructor.
void setK40Parameters(const JK40Parameters_t ¶meters)
Set K40 parameters.
Fit parameters for two-fold coincidence rate due to K40.
size_t getN() const
Get number of fit parameters.
const JK40Parameters_t & getGradient(const double ct) const
Get gradient.
JK40Parameters_t gradient
static const JK40Parameters & getInstance()
Get default values.
int getIndex(JParameter_t JK40Parameters::*p) const
Get index of parameter.
double getValue(const double ct) const
Get K40 coincidence rate as a function of cosine angle between PMT axes.
JK40Parameters()
Default constructor.
Auxiliary data structure for derived quantities of a given PMT pair.
double signal
combined signal
double sigma
total width [ns]
double cc
correlated background
double background
combined background
double t0
time offset [ns]
double bc
uncorrelated background
double ct
cosine angle between PMT axes
friend std::ostream & operator<<(std::ostream &out, const JModel_t &object)
Write model parameters to output stream.
JPMTParameters_t parameters[NUMBER_OF_PMTS]
JModel()
Default constructor.
int getIndex(int pmt, JParameter_t JPMTParameters_t::*p) const
Get index of parameter.
friend std::ostream & operator<<(std::ostream &out, const JModel &object)
Write model parameters to output stream.
int getIndex(int pmt) const
Get index of parameter.
size_t getN() const
Get number of fit parameters.
double getValue(const pair_type &pair) const
Get K40 coincidence rate.
double sigmaK40_ns
intrinsic K40 arrival time spread [ns]
JOption_t getOption() const
Get fit option.
double getFixedTimeOffset() const
Get time offset.
void setSigmaK40(const double sigma)
Set intrinsic K40 arrival time spread.
int getIndex() const
Get index of PMT used for fixed time offset.
double getSigmaK40() const
Get intrinsic K40 arrival time spread.
void setOption(const int option)
Set fit option.
const real_type & getReal(const pair_type &pair) const
Get derived quantities.
JModel(const JModule &module, const JK40Parameters ¶meters)
Constructor.
double getValue(const pair_type &pair, const double dt_ns) const
Get K40 coincidence rate.
void setIndex()
Set index of PMT used for fixed time offset.
JModel(const JModule &module, const JK40Parameters ¶meters, const JTDC_t::range_type &TDC, const int option)
Constructor.
bool hasFixedTimeOffset() const
Check if time offset is fixed.
int index
index of PMT used for fixed time offset
Fit parameters for single PMT.
static constexpr double QE_MIN
minimal QE
friend std::ostream & operator<<(std::ostream &out, const JPMTParameters_t &object)
Write PMT parameters to output stream.
JParameter_t t0
time offset [ns]
static constexpr double TTS_NS
start value transition-time spread [ns]
JParameter_t TTS
transition-time spread [ns]
void disable()
Disable PMT.
size_t getN() const
Get number of fit parameters.
JPMTParameters_t()
Default constructor.
void set(const JPMTParameters_t ¶meters)
Set parameters that are free to given values.
JParameter_t bg
background [Hz/ns]
static constexpr double QE_MAX
maximal QE
int getIndex(JParameter_t JPMTParameters_t::*p) const
Get index of parameter.
static const JPMTParameters_t & getInstance()
Get default values.
JParameter_t QE
relative quantum efficiency [unit]
Data structure for measured coincidence rates of all pairs of PMTs in optical module.
Data structure for measured coincidence rate of pair of PMTs.
rate_type(double dt_ns, double value, double error)
Constructor.
double error
error of rate [Hz/ns]
double value
value of rate [Hz/ns]
rate_type()
Default constructor.
double dt_ns
time difference [ns]
Interface for maximum likelihood estimator (M-estimator).
Auxiliary base class for aritmetic operations of derived class types.
void resize(const size_t size)
Resize matrix.
JMatrixND & reset()
Set matrix to the null matrix.
void solve(JVectorND_t &u)
Get solution of equation A x = b.
void invert()
Invert matrix according LDU decomposition.