
JMultiEquals
The template class JMultiEquals resides in the name space JLANG and constitutes an auxiliary base class.
Like the template class JEquals, it implements the (not-)equal operators == and != of a derived class. In
this case, the class can be derived from multiple other base classes, some of which providing for the policy
method equals. Here, a second template argument is used that corresponds to a type list. The (not-)equal
operators of the derived class corresponds to the (not-)equal operators of the base classes in the type list.
The type list can conveniently be specified with class JTYPELIST.

For example, the following classes A and B derive from JEquals.

struct A :

public JEquals<A>

{

A(int value) :

value(value)

{}

bool equals(const A& object) const

{

return this->value == object.value;

}

int value;

};

struct B :

public JEquals<B>

{

B(int value) :

value(value)

{}

bool equals(const B& object) const

{

return this->value == object.value;

}

int value;

};

Here, the classes C and D derive from JMultiEquals but with different type lists.

struct C :

public A,

public B,

public JMultiEquals<C, A>

{

C(const int a,

const int b) :

A(a),

B(b)

{}

};

struct D :

public A,

public B,

public JMultiEquals<D, JTYPELIST<A, B>::typelist>

{

D(const int a,

const int b) :

A(a),

B(b)

{}

};

The following example

C c1(1,1);

C c2(0,1);

C c3(1,0);

cout << (c1 == c1) << endl;

cout << (c1 == c2) << endl;

cout << (c1 == c3) << endl;

will produce

1

0

1
1



and

D d1(1,1);

D d2(0,1);

D d3(1,0);

cout << (d1 == d1) << endl;

cout << (d1 == d2) << endl;

cout << (d1 == d3) << endl;

will produce

1

0

0

Note that without JMultiEquals, the compiler would have detected an error due to the ambiguity of the
the (not-)equal operators.

2


