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1 Intro

This is - at the moment - meant to be a brief introduction to the reconstruction process in KM3NeT,
and what it all means.
This document is meant to be a guide for newcomers, but also contain information useful to those
familiar with the code.

2 What Is Reconstruction?

At the end of the day, reconstruction means fitting a model (specifically, model parameters) to data.
The underlying, most important one for us is the Cherenkov cone hypothesis. Relativistic charged
particles produce Cherenkov radiation, which propagates through our detector as a cone of light.
Neutrino interactions are usually separated into ‘track’ events and ‘shower’ events. A neutrino
interaction, depending on the neutrino flavour, can result in a muon coming out of the interaction point
- a track - or can create a cascade of particles - hadrons or electrons - which is termed a shower. The
separate event types are dealt with using separate reconstruction algorithms. The model we use
assumes that a muon traverses the detector and emits Cherenkov radiation as it propagates, and the
same for particles produced in a shower.

Now, what do we want to ‘reconstruct’? We settle for wanting to find out the energy and direction of
the muon tracks, as well as the energy and direction of showers. In muon track reconstruction, the track
length is very much tied to the energy of the muon. Approximately, a 1 GeV muon travels 4 metres.
For showers, this is trickier. A shower profile is not simply proportional to its energy: the number of
particles varies, for example. ORCA and ARCA employ different shower reconstruction algorithms,
because of the geometrical difference between the detectors. For track reconstruction the method is
practically detector-independent.
This act of reconstructing tracks and showers is not so simple. In KM3NeT there is a ‘chain’ of steps
taken to carry out track reconstruction. If someone refers to the ‘reco chain’ or ‘JMuonChain’, this is
what they mean. The chain comprises several applications:

JMuonPrefit −→ JMuonSimplex −→ JMuonGandalf −→ JMuonStart −→ JMuonEnergy,

the first three of which fit the position and direction of track events within the detector and the last two
of which estimate the length and energy of the track. As an input either a DAQ file or a simulation file
can be given. Raw simulation data needs to be preprocessed by the program JTriggerEfficiency,
before it can be handed to the reconstruction chain. This program simulates the background light (from
K-40 decays), simulates the response of PMTs to photon hits, and applies a trigger to these hits. The
neutrino events in these files are termed ‘post-trigger’.
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Now, a few brief notes on this chain. Previously, it has been concluded that JMuonSimplex does not
contribute much to the angular resolution (see e.g. this ELOG post). Nevertheless the step is included,
since it reduces the CPU time required for fit convergence in JMuonGandalf, as reported in this ELOG
Post.

3 Track Reconstruction

The following section aims to give a brief, not overly technical description of these steps in the
reconstruction chain. If more information is needed, please consult the code itself.
We want to fit to our data the hypothesis that a muon track causes hits in the KM3NeT detector. In
reconstructing a muon event, we want to describe the important parameters: the position and direction
of the muon at each point in time, giving 5 independent parameters. This is a non-linear problem.
In this case, performing an initial fit gives us a starting point for determining the muon direction.
Neglecting light scattering and assuming a muon direction reduces the non-linear problem to a linear
one. Then a full fit and maximum likelihood estimation can be carried out, followed by an estimation of
the muon energy.
If you are not too familiar with JPP, the script name followed by -h! prints out a small description of
the code and the list of default values that are used. Note that the ‘default’ parameters when running
this chain differ between ARCA and ORCA. The text files with the reference values an be found in
JPP DATA1.

3.1 JMuonPrefit

JMuonPrefit does what it says on the tin. It performs an initial fit in the detector, taking N track
direction hypotheses in all directions. By assuming a direction, the remaining parameters to fit to - or
‘reconstruct’ - are the position of the muon and time at which it crosses some reference plane
perpendicular to the muon direction. The parameters describing the muon are obtained by an iterative
procedure to minimise the χ2. The χ2 is based on the time difference between the photon arrival time
and its expected arrival time, and is normalised to an assumed time resolution.
JMuonPrefit saves a specified amount of these fits, and then hands them to JMuonGandalf to perform
the full direction fit and reconstruct the muon trajectory.

A coordinate system is defined by taking an assumed muon direction, where the muon travels parallel
to the z-axis and crosses the z = 0 plane at (x0,y0) at time t0. The muon trajectory passes the PMT of
the detector at a distance of closest approach R, defined by

Rj =
√

(xj − x0)2 + (yj − y0)2 . (1)

The expected arrival time tj of the Cherenkov photons on the PMT j can be expressed as

tj = t0 +
zj +Rj tan(θc)

c
, (2)

with zj the distance to the z=0 plane, c the speed of light in a vacuum, and θc the Cherenkov angle. A
derivation can be found in A.1.

1These values are configurable, and investigations into changing the input parameters for JMuonPrefit → JMuonGandalf

are described in the eLog here and here. Note the road width is an important parameter; JMuonPrefit and JMuonGandalf

appear to need a road width of ≈ 50 metres for a clean hit selection.
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Defining:

t′j =
tjc

tan(θc)
− zj

tan(θc)
, (3)

and

t′0 =
t0c

tan(θc)
. (4)

This gives, for all pairs of consecutive hits i,j the relation:

t′2j − t′2i − 2(t′j − t′i)t′0 = x2j − x2i − 2(xj − xi)x0
+ y2j − y2i − 2(yj − yi)y0 .

(5)

See A.2 for the derivation.
Note that x0, y0 and t0 appear in a linear manner. Therefore, a matrix equation can be set up which
contains one row for each pair of consecutive hits. This equation can be solved using a least squares
minimisation. Appendix A.3 contains further details.
In JMuonPrefit, a cluster of causally related hits is selected from the data (in 1D), in order to minimise
the linear fit being affected by the optical background. Possible outliers are removed as long as their
contribution to the total χ2 is larger than 3 standard deviations.
This procedure is repeated for a specified grid angle (the default value is currently 5◦ for ORCA), which
is used to scan across the whole solid angle of the sky. The N best-fit test directions are stored and
used in the next stage of the reconstruction as start points for a full fit. The ‘best’ fit is determined by
the fit quality parameter Q (something that appear often), and in JMuonPrefit is given by

Q = NDF− 1

4

χ2

NDF
, (6)

where NDF is the number of degrees of freedom in the fit.
Dividing by the number of degrees of freedom is done in order to weigh the fit directions with small
associated hit statistics with those fit directions with a large number of hits. The division by 4 is chosen
to provide sufficient separation between the qualities of the individual fits.

3.2 JMuonGandalf

JMuonGandalf is our be-all and end-all of vertex and direction reconstruction for tracks. The algorithm
takes the fits from JMuonPrefit (either all the fits or the fit with the highest quality, you decide),
performs a scan around the corresponding track hypotheses and minimises a chi-square function in
terms of the track direction and position. This chi-square estimation is based on semi-analytical arrival
time distributions, which describe the number of photo-electrons observed per unit time by a PMT
situated at a radial distance ri from the track and oriented at angles θi and φi away from it. The arrival
time distributions take into account the quantum efficiencies, transit-time spreads and angular
acceptances of the PMT and contain individual contributions from direct and single scattered
Cherenkov light from different sources, including the ionisation and radiative energy losses of muons,
the light emission from electromagnetic and hadronic showers and the light emission by delta-rays
created along the track. The wavelength-dependent absorption and dispersion of light are also factored
in. A full description and derivation of the arrival time PDFs can be found in a separate document on
the Jpp doxygen [5].

Using the arrival time distributions, it is possible to define probability density functions (PDFs) which
describe the chance of observing a first photo-electron at a relative time dt with respect to the arrival
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time expectation for a direct hit caused by an unscattered Cherenkov photon [6]. First, the probability
to observe no hit until time dt needs to be defined. This probability is given by Poisson-statistics. If the
instantaneous rate of photo-electrons observed by PMT i is given by the arrival time distribution
n(dti, ri, θi, φi), the total number of photo-electrons expected up until time dt can be defined:

N(dt, ri, θi, φi) =

∫ dt

dt0

n(τ, ri, θi, φi)dτ. (7)

In this, dt0 corresponds to an arbitrary starting point, typically assumed to be the start of the DAQ
timeslice. The probability that no photo-electrons are registered up until relative time dt corresponds to:

P (N = 0; dt, ri, θi, φi) =
N0

0!
e−N = e−N(dt,ri,θi,φi). (8)

To obtain the aforementioned probability density function for the registration of a first photo-electron
at relative time dt, this needs to be multiplied with the instantaneous detection rate and normalised to
one. Integrating over the total time window [dt0, dt1] on which n(dti, ri, θi, φi) is defined, the
normalisation factor is found to be:∫ dt1

dt0

n(dt, ri, θi, φi)e
−N(dt,ri,θi,φi) =

[
−e−N(dt,ri,θi,φi)

]dt1
dt0

= 1− e−Ntot . (9)

Therefore, the expression for the PDF of the first hit time registration becomes:

f(dt; ri, θi, φi) =
1

1− e−Ntot
n(dt, ri, θi, φi)e

−N(dt,ri,θi,φi). (10)

Equation 10 can be used to test the hypothesis that a track particle is responsible for a given cluster of
hits within the detector (H1). In this case, the track hypothesis needs to be contrasted to the null
hypothesis, which assumes the hit pattern was caused by background radiation only (H0). The
likelihood that a cluster of hits with relative detection times dtm was caused by background only can be
defined as:

L(dt1, dt2, dt3, ..., dtM−1, dtM |H0) =

M∏
m=1

fB(dtm;Rm)

=

M∏
m=1

nB(dtm, Rm)

1− e−NB,tot
e−NB(dtm,Rm). (11)

In this, M corresponds to the total number of hits within the cluster and Rm corresponds to the
background rate observed by the PMT which registered hit m, which is assumed to be constant over the
time of the event. Furthermore, fB(dtm;Rm) corresponds to the first hit time PDF for PMT m in the
case of background hits only, which is dependent upon the arrival time distribution for
background-induced photo-electrons nB(dtm, Rm) and its cumulative distribution NB(dtm, Rm) in an
analogous way to equation 10.

The likelihood that the same cluster of hits is caused by a track signature on top of the background can
be written down as:
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L(dt1, dt2, dt3, ..., dtM−1, dtM |H1) =

M∏
m=1

fS+B(dtm; rm, θm, φm, Rm)

=

M∏
m=1

nS+B(dtm, rm, θm, φm, Rm)

1− e−NS+B,tot
e−NS+B(dtm,rm,θm,φm,Rm), (12)

where ns+B = nB +
∑
k nk constitutes the sum over all sources of light k originating from the track, in

addition to the random background. Dividing equation 11 by equation 12 and taking the logarithm
yields:

λ = ln
L(dt1, dt2, dt3, ..., dtM−1, dtM |H0)

L(dt1, dt2, dt3, ..., dtM−1, dtM |H1)
, (13)

which is asymptotically distributed as a chi-square distribution according to Wilk’s theorem. The
minimum of λ in terms of the track parameters corresponds to the track which is most compatible with
the signal hypothesis and least with the background-only model. JMuonGandalf tries to find this
minimum in an iterative way. The minimisation is performed using the Levenberg-Marquardt
algorithm, which allows for continuous interpolation between the method of gradient descent and
Gauss-Newton minimisation. The latter of these two sub-dependent methods relies on information on
the curvature of the chi-square landscape in order to determine which step direction most efficiently and
reliably approaches the minimum. Because calculations of (second) derivatives are numerically
expensive, the gradient of the chi-square landscape is analytically computed within JMuonGandalf. The
final chi-square value corresponding to the obtained minimum is saved and is used to define the quality
metric Q = −χ2 of the fit. The larger the quality, the better the fit.

3.3 JMuonStart

In JMuonStart, the observed start position of muon trajectory is determined by back-projecting the hits
onto the track under the Cherenkov angle. The first associated emission point which exceeds the
random background level is selected as the start position, and the last point as the end point of the
track. The vertex position of the track is then moved to the determined start point.

3.4 JMuonEnergy

JMuonEnergy determines the energy of the muon. This is done based on the hit/no-hit likelihood for all
PMTs in a cylindrical volume surrounding the track hypothesis. The relative longitudinal position of
the base of the cylinder with respect to the event vertex and the radial size of the cylinder can be
modified via the options -@ZMin m and -@roadWidth m respectively. For each PMT in the cylinder
surrounding the muon track, the number of photon hits induced by the 40K-background, by delta-rays,
by electromagnetic showers and by the ionisation and radiative energy losses of the muon are estimated
from the tabulated Jpp PDFs. In this, the closest distance of approach between the muon and the PMT
and the incidence angle of the incoming light are taken into account. Given an expected number of hits
as function of the muon energy µi, the probability that the i-th PMT observes n hits in reality will be
given by the Poisson distribution:

P (n;µi) =
µni
n!
e−µi . (14)

This means that the probability that the PMT observes no hit is given by:
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P (n = 0;µi) = e−µi , (15)

whilst the probability that the PMT observes any number of hits above zero is:

P (n > 0;µi) = 1− P (n = 0;µi) = 1− e−µi . (16)

JMuonEnergy maximizes the likelihood L(E) of the configuration of hits in the cylinder surrounding the
muon track as a function of the muon energy. In practice, this is done using an M-estimation method
which minimizes a cost function c(E) as function of the energy. The cost function is defined differently
for energy reconstruction in ORCA and for energy reconstruction in ARCA. In ORCA, it corresponds
directly to the negative log-likelihood of the hit-configuration in the cylinder surrounding the muon
track:

c(E) ≡ − ln (L(E)) = −
N∑
i=1

ln
[(

1− 2e−µi(E)
)

In>0 + e−µi(E)
]
. (17)

In this, N corresponds to the total number of PMTs in the cylinder. The term In>0 evaluates to 1 for
all n > 0 and to 0 otherwise. In ARCA on the other hand, the cost function comprises a sum over
Lorentzian functions ρ(x) = 1 + 1

2x
2, where x corresponds to the logarithmic hit/no-hit probabilities,

i.e.:

c(E) =

N∑
i=1

[
1 +

1

2
ln2
[(

1− 2e−µi(E)
)

In>0 + e−µi(E)
]]
. (18)

This cost function was chosen based on the observation that it improves the energy resolution for tracks
with high energy [7]. In contrast to this, the energy resolution for ORCA degrades when using a
Lorentzian cost function [8, 9].

Once the cost functions have been set up, they are minimized over the track energy using a five-point
search within a user-defined logarithmic energy range. This energy range is set via the options
-@EMin log and -@EMax log. For each iteration of the search, five logarithmically equidistant energy
points are defined. The cost function for each corresponding energy value is calculated according to
equation 17 or 18. Subsequently, the limits of the energy range are adjusted such that the point which
yielded the maximum likelihood falls in the middle. Five new logarithmically equidistant energy points
are defined within the updated range, after which the search is repeated until the difference between the
smallest and largest energy within the range falls below a user-specifiable threshold, set via the option
-@resolution. The final energy and the corresponding cost function value are stored as part of the
track fit parameters under JENERGY ENERGY and JENERGY CHI2 respectively. Other track fit parameters
that are saved include the bounds of the energy range used in the last iteration of the 5-point search
(JENERGY MINIMAL ENERGY and JENERGY MAXIMAL ENERGY), the number of operational PMTs within the
cylinder surrounding the track hypothesis (JENERGY NDF), the corresponding total number of hits
(JENERGY NUMBER OF HITS), and the length of the muon track, computed from the final energy estimate
and the average energy loss factor per unit of length (JENERGY MUON RANGE METRES).
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[10] The KM3NeT Detector Description Data Format, K. Graf, 2021.

[11] Detector Calibration, M. de Jong, 2021.

[12] Dynamic position calibration, M. de Jong, 2021.

[13] Dynamic orientation calibration, M. de Jong, 2021.

7

https://arxiv.org/abs/1907.02597?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%253A+arxiv%252FQSXk+%2528ExcitingAds%2521+cs+updates+on+arXiv.org%2529
https://pos.sissa.it/301/950/
https://pure.uva.nl/ws/files/155195983/Thesis.pdf
https://common.pages.km3net.de/jpp/JPDF.PDF
https://elog.km3net.de/Computing+and+Software/518
https://elog.km3net.de/Computing+and+Software/248
https://elog.km3net.de/Computing+and+Software/489
https://drive.google.com/file/d/0B6l8SNtndcwaUTZPOWZOXzd6R3M/view?resourcekey=0-wYTEiJhKHWNse6P_AwjYhA
https://common.pages.km3net.de/jpp/Detector_calibration.PDF
https://common.pages.km3net.de/jpp/Position_calibration.PDF
https://common.pages.km3net.de/jpp/Orientation_calibration.PDF


A Appendix

A.1 Arrival Time Derivation

Figure 1: Diagram of muon travelling in z-direction. The blue line depicts the Cherenkov shock front.

Consider a muon, originating from a point z0 (where it crosses the z = 0 plane), travelling in the
z-direction. The muon travels a distance A, at which it emits a Cherenkov photon. The distance to the
PMT from this point is denoted as D. The muon travels another distance, B, until it is at the point of
closest approach to the PMT; this distance is denoted by R - see 1 - and this point is denoted by z.
This geometry is shown in Figure 1.
So, the time for the light to reach the PMT will be

t1 = t0 +
A

c
+

D

cwater
=⇒ c · t1 = c · t0 +A+D · n . (19)

with n the refractive index of the medium, cwater the speed of light in water, and c the speed of light in
a vacuum (cwater = c/n). With an emission angle of cosθ = 1

n·β , and β ≈ 1, we have cosθC = 1
n .

Thus,

c · t1 = c · t0 +A+
D

cosθC
. (20)

The following relations can be made:

sinθC =
R

D
, (21)

cosθC =
B

D
, (22)

and
A = (z −B) . (23)
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Now, the arrival time becomes

c · t1 = c · t0 + z −D · cosθC +
R

sinθC · cosθC
= c · t0 + z − R

sinθC
· cosθC +

R

sinθC · cosθC
. (24)

Re-arranging:

c·t1 = c·t0+z+
(−R · cos2θC +R

sinθC · cosθC
)

= c·t0+z+
(R(1− cos2θC)

sinθC · cosθC
)

= c·t0+z+
( R · sin2θC
sinθC · cosθC

)
= c·t0+z+

(R · sinθC
cosθC

)
.

(25)
This becomes

t1 = t0 +
z +R · tanθC

c
. (26)

In reality the arrival times will not conform to the behaviour described by equation 26 exactly. There
are several factors which can contribute this, such as inter-module and inter-PMT time-offsets. These
time-offsets are taken into account using calibration data derived from dedicated procedures [11, 12, 13],
which are fed into the reconstruction algorithms via the detector file [10]. However, even if these global
time-offsets have been corrected for, fluctuations in the arrival time are still expected as a consequence
of PMT-internal effects.

One important effect is time-slewing. Time-slewing refers to the dependence of the measured hit times
on the hit amplitudes. Typically, the larger the amplitude of a PMT pulse, the quicker the pulse
reaches the detection threshold set by the hardware discriminator and the earlier the hit is registered.
Conservatively, the lower the amplitude, the longer it takes for the pulse to reach the threshold and the
later it is registered. As a consequence of this dependency, hits can be observed several nanoseconds in
front or behind the expected arrival time. A correction is applied to every hit which partakes in the
reconstruction algorithms to account for this. The magnitudes of the corrections are based on data
obtained from muon calibrations with the application JFrodo and are tabulated in the function object
JGetRiseTime.

A.2 Derivation of Hit Relation

From Equation 3 and 4 we get the expressions

tj =
t′j tan(θc) + zj

c
, (27)

and

t0 =
t′0 tan(θc)

c
. (28)

Substituting these into Equation 2 gives:

t′j tan(θc) + zj = t′0 tan(θc) + zj +Rj · tan(θc) , (29)

=⇒ t′j = t′0 +Rj . (30)

=⇒ t′j − t′0 =
√

(xj − x0)2 + (yj − y0)2 , (31)

=⇒
(
t′j − t′0

)2
= (xj − x0)2 + (yj − y0)2 . (32)
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This equation corresponds to a cone and relates the fit parameters (x0, y0, t
′
0) to the hit parameters

(xj , yj , t
′
j)

∴ t′2j − 2t′jt
′
0 + t′20 = x2j − 2xjx0 + x20

+y2j − 2yjy0 + y20 .
(33)

Following the same logic for a hit on the PMT i with expected arrival time ti (with distance of closest
approach Ri)

t′2i − 2t′it
′
0 + t′20 = x2i − 2xix0 + x20

+y2i − 2yiy0 + y20 .
(34)

Subtracting Equation 34 from Equation 33:

t′2j − t′2i − 2t′jt
′
0 + 2t′it

′
0 = x2j − x2i − 2xjx0 + 2xix0

+y2j − y2i − 2yjx0 + 2yix0 .
(35)

This gives the result shown in Equation 5

t′2j − t′2i − 2(t′j − t′i)t′0 = x2j − x2i − 2(xj − xi)x0
+ y2j − y2i − 2(yj − yi)y0 .

(36)

A.3 Matrix Equation

Equation 5 can be formulated in a matrix equation considering all pairs of consecutive hits:

H Θ = Y (37)

where

H =



2(x2 − x1) 2(y2 − y1) −2(t′2 − t′1)

2(x3 − x2) 2(y3 − y2) −2(t′3 − t′2)

. . .

. . .

2(x1 − xn) 2(y1 − yn) −2(t′1 − t′n)


, (38)

Y =



x22 − x21 + y22 − y21 − t′22 + t′21

x23 − x22 + y23 − y22 − t′23 + t′22

.

.

x21 − x2n + y21 − y2n − t′21 + t′2n


, (39)
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and

Θ =


x0

y0

t′0

 . (40)

The number of pairs of consecutive hits amounts to the number of hits n, taking into account the pair
of the first and last hit. The optimal (least squares) solution to 37 is

Θ =
(
HT V −1H

)−1 ×HT V −1 × Y (41)

with V the standard co-variance matrix, which can be expressed as

V = J ×



σ2
1 . . . 0

. σ2
2 . . .

. . σ2
3 .

. . . . .

0 . . . σ2
n


× JT . (42)

with σj the resolution of the measured time tj .

The Jacobian matrix J is expressed as

J =



2t′1 −2t′2 0 . . .

0 2t′2 −2t′3 0 . .

. 0 2t′3 −2t′4 . .

. . . . . .

−2t′1 . . . . 2t′n


, (43)

with Jij = δYi / δtj .

Thus the co-variance matrix V is an n× n which at first order is (almost) tridiagonal:

V =



(2t′1σ
′
1)

2
+ (2t′2σ

′
2)

2 − (2t′2σ
′
2)

2
0 . . − (2t′21σ1)

2

− (2t′2σ
′
2)

2
(2t′2σ

′
2)

2
+ (2t′3σ

′
3)

2 − (2t′3σ
′
3)

2
0 . .

0 − (2t′3σ
′
3)

2
(2t′3σ

′
3)

2
+ (2t′4σ

′
4)

2
. . .

. 0 . . . .

. . . . . .

− (2t′1σ1)
2

. . . . (2t′nσ
′
n)

2
+ (2t′1σ

′
1)

2


,

(44)
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where σ′j = σjc / tan θc. Neglecting the off-diagonal elements of V , the number of operations needed to
obtain the solution Θ is proportional to n (the number of hits).
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