Jpp 19.3.0
the software that should make you happy
Loading...
Searching...
No Matches
JTestPoissonLogLikelihoodRatioBeestonBarlow.hh
Go to the documentation of this file.
1#ifndef __JCOMPAREHISTOGRAMS__JTESTPOISSONLOGLIKELIHOODRATIOBEESTONBARLOW__
2#define __JCOMPAREHISTOGRAMS__JTESTPOISSONLOGLIKELIHOODRATIOBEESTONBARLOW__
3
4#include <istream>
5#include <ostream>
6
7#include "JLang/JException.hh"
8
11
12#include "TH1.h"
13#include "TH2.h"
14
15#include "RooRealVar.h"
16#include "RooRealConstant.h"
17#include "RooParamHistFunc.h"
18#include "RooHistConstraint.h"
19#include "RooProdPdf.h"
20#include "RooDataSet.h"
21#include "RooDataHist.h"
22#include "RooHistFunc.h"
23#include "RooHistPdf.h"
24#include "RooRealSumPdf.h"
25#include "RooFitResult.h"
26
27
28/**
29 * \author bjung
30 */
31namespace JCOMPAREHISTOGRAMS {
32
33 /**
34 * Implementation of the Poisson log-likelihood ratio test.\n
35 * The first histogram is treated as an Asimov dataset corresponding to a given null hypothesis,\n
36 * which is compared to an alternative hypothesis given by the second histogram.\n\n
37 *
38 * This class is derived from the abstract class JTest_t(). For a general description of the implementation of this and other tests derived from JTest_t(), see its documentation.\n
39 */
41 public JTest_t
42 {
43 public:
44
45 /**
46 * Default constructor.
47 */
49 JTest_t("Poisson_NLLR_Beeston-Barlow", "NLLR")
50 {}
51
52
53 /**
54 * Applies a Poissonian log-likelihood ratio test to the two given histograms.\n
55 * The first histogram is treated as an Asimov dataset corresponding to a given null hypothesis.\n
56 * The second histogram is treated as the expectation for the alternative hypothesis, to which the null hypothesis is compared.
57 *
58 * \param o1 First histogram
59 * \param o2 Second histogram
60 */
61 void test(const TObject* o1, const TObject* o2) override
62 {
63 using namespace std;
64 using namespace JPP;
65
66 const TH1* h1 = dynamic_cast<const TH1*>(o1);
67 const TH1* h2 = dynamic_cast<const TH1*>(o2);
68
69 if (h1 == NULL || h2 == NULL) {
70 THROW(JCastException, "JTestPoissonLogLikelihood::test(): Could not cast given TObjects to TH1.");
71 }
72
73 if(h1->GetNbinsX() != h2->GetNbinsX() ||
74 h1->GetNbinsY() != h2->GetNbinsY() ||
75 h1->GetNbinsZ() != h2->GetNbinsZ()) {
76 THROW(JValueOutOfRange, "JTestPoissonLogLikelihood::test(): Histograms with different binning. The objects: " <<
77 h1->GetName() << " and " << h2->GetName() << " can not be compared." << endl);
78 }
79
80 // Flatten histograms
81
82 const Int_t N = h1->GetNbinsX() * h1->GetNbinsY() * h1->GetNbinsZ();
83
84 TH1I H1("H1", NULL, N, 0.5, N+0.5);
85 TH1I H2("H2", NULL, N, 0.5, N+0.5);
86
87 for (Int_t i=1 ; i <= h1->GetNbinsX() ; ++i) {
88 for (Int_t j=1 ; j <= h1->GetNbinsY() ; ++j) {
89 for (Int_t k=1 ; k <= h1->GetNbinsZ() ; ++k) {
90
91 const Int_t n = h1->GetBin(i,j,k);
92
93 const double y1 = h1->GetBinContent(i,j,k);
94 const double y2 = h2->GetBinContent(i,j,k);
95
96 const double e1 = h1->GetBinError(i,j,k);
97 const double e2 = h2->GetBinError(i,j,k);
98
99 H1.SetBinContent(n, y1);
100 H2.SetBinContent(n, y2);
101
102 H1.SetBinError(n, e1);
103 H2.SetBinError(n, e2);
104 }
105 }
106 }
107
108 RooRealVar index("index", "index", 0.5, N+0.5);
109
110 RooDataHist dh1("dh1", h1->GetTitle(), index, &H1);
111 RooDataHist dh2("dh2", h2->GetTitle(), index, &H2);
112
113 // Compute NLL of Asimov data, given the altnerative model with Beeston-Barlow correction
114
115#if ROOT_VERSION_CODE < ROOT_VERSION(6,32,0)
116 RooParamHistFunc ph2 ("ph2", "ph2", dh2);
117#else
118 RooParamHistFunc ph2 ("ph2", "ph2", dh2, index);
119#endif
120 RooHistConstraint hc2("hc2", "hc2", ph2);
121
122 RooRealSumPdf model_tmp2("model_tmp2", "model_tmp2", ph2, RooRealConstant::value(1.0));
123
124 RooProdPdf model2("model2", "model2", hc2, RooFit::Conditional(model_tmp2,index));
125
126 RooFitResult* result2 = (RooFitResult*) model2.fitTo(dh1,
127 RooFit::Offset("bin"),
128 RooFit::SumW2Error(false),
129 RooFit::PrintLevel(-1),
130 RooFit::Verbose(false),
131 RooFit::Save(true));
132
133 if (result2 == NULL) {
134 THROW(JNullPointerException, "JTestPoissonLogLikelihoodRatioBeestonBarlow::test(): Unable to retrieve Beeston-Barlow fit results");
135 }
136
137 const double nllratio = 2 * (result2->minNll() + hc2.getLogVal());
138 const bool passed = (nllratio < threshold);
139
140 const JResultTitle title(testName, resultType, passed, nllratio);
141
142 const JTestResult r (testName,
143 JRootObjectID(MAKE_STRING(h1->GetDirectory()->GetPath() << h1->GetName())),
144 JRootObjectID(MAKE_STRING(h2->GetDirectory()->GetPath() << h1->GetName())),
145 resultType, nllratio, threshold, result2, passed);
146
147 this->push_back(r);
148 }
149
150
151 /**
152 * Read test parameters from input.
153 *
154 * \param in input stream
155 * \return input stream
156 */
157 std::istream& read(std::istream& in) override
158 {
159 using namespace JPP;
160
161 in >> threshold;
162
163 if (!(threshold > 0.0)) {
164 THROW(JValueOutOfRange, "JTestPoissonLogLikelihoodRatioBeestonBarlow::read(): Given chi-square threshold " << threshold << " is invalid");
165 }
166
167 return in;
168 }
169
170 private:
171
172 double threshold; //!< threshold chi-square to decide if test is passed.
173 };
174}
175
176#endif
Exceptions.
#define THROW(JException_t, A)
Marco for throwing exception with std::ostream compatible message.
#define MAKE_STRING(A)
Make string.
Definition JPrint.hh:63
Class dedicated to standardize the title of the graphical objects produced by the JTest_t() derived c...
std::istream & read(std::istream &in) override
Read test parameters from input.
void test(const TObject *o1, const TObject *o2) override
Applies a Poissonian log-likelihood ratio test to the two given histograms.
Interface to read input and write output for TObject tests.
Definition JTest_t.hh:42
const std::string resultType
test result type
Definition JTest_t.hh:181
const std::string testName
test name
Definition JTest_t.hh:180
Auxiliary class to handle file name, ROOT directory and object name.
Exception for cast operation.
Exception for null pointer operation.
Exception for accessing a value in a collection that is outside of its range.
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
Structure containing the result of the test.