JMultiComparable

The template class JMultiComparable resides in the name space JLANG and constitutes an auxiliary base
class. Like the template class JComparable, it implements the (not-)equal operators == and != as well as
the comparison operators <, <=, > and >= of a derived class. In this case, the class can be derived from

multiple other base classes, some of which providing for the policy method less. Here, a second template
argument is used that corresponds to a type list. The (not-)equal and comparison operators of the derived
class corresponds to the (not-)equal and comparison operators of the base classes in the type list. In this, t

he

order determines the comparison hierarchy. The type list can conveniently be specified with class JTYPELIST.

For example, the following classes A and B derive from JComparable.

struct A : struct B :
public JComparable<A> public JComparable<B>
{ {
AO BO
value(0) value (0)
{3 {3
A(const int value) : B(const int value)
value(value) value(value)
{3 {3
bool less(const A& object) const bool less(const B& object) const
{ {
return this->value < object.value; return this->value < object.value;
} }
int value; int value;
}; 1

Here, the classes C and D derive from MultiJComparable but with different type lists.

struct C : struct D :
public A, public A,
public B, public B,
public JMultiComparable<C, JTYPELIST<A, B>::typebibfiic JMultiComparable<D, JTYPELIST<B, A>
{ {
C(const int a, const int b) : D(const int a, comst int b)
A(a), ACa),
B(b) B(b)
{3 {3
¥ };

The following example

C ci(1, 0);
C c2(0, 1);
cout << (cl == c2) << endl;
cout << (cl !'= c2) << endl;

cout << (c1 < c¢2) << endl;
cout << (cl <= c2) << endl;
cout << (cl > c¢2) << endl;

::typelist>



cout << (cl >= c2) << endl;

will produce

0

1

0

0

1

1

and
D di(1, 0);
D d42(0, 1);

cout << (d1 == d2) << endl;
cout << (d1 !'= d2) << endl;
cout << (d1 < d2) << endl;
cout << (d1 <= d2) << endl;
cout << (d1 > d2) << endl;
cout << (d1 >= d2) << endl;

will produce

OO, P P, O

As can be seen, the comparison hierarchy of class C and D is inverted. Note that without
JMultiComparable, the compiler would have detected an error due to the ambiguity of the the (not-)equal
operators.



