
Building c++ code with JMakefile

October 7, 2025

Abstract

This note contains a brief description of the implementation of the make process within
Jpp. Examples of how to use the Makefiles included in Jpp to compile a c++ project are
given.

1 Jpp makefiles

The makefiles included in Jpp can be used for several purposes. Besides compiling the Jpp source
code, one can build .pdf documents from .tex files, they can be used to build c++ projects
including the compilation of dynamic libraries, and one can also convert libreoffice documents
to .pdf files. The instructions and variabes that make will follow are distributed in several
makefiles organised according to the structure shown in figure 1. If one takes a look at these

Figure 1: Structure of the jpp Makefiles. JMakefile includes JMakerules and
JMakedependencies, the former of which includes JMakedefines.

makefiles, they look as follows.

#JMakefile

include $(JPP_DIR)/JMakerules
include $(JPP_DIR)/JMakedependencies

1

JMakefile is rather simple. It only includes JMakerules and JMakedependencies. JMakerules
is structured as follows,

#JMakerules

include $(JPP_DIR)/JMakedefines
{

definition of pattern rules

}

{

definition of file lists and assignation of default values

}

where

#JMakedefines

{

definition of auxiliary functions

}

{

definition of global variables

}

Finally, JMakedependencies has the following structure

#JMakedependencies

{

definition of phony targets and top level rules for lists of flies

}

{

inclussion of dependency files generated by the compiler

}

In what follows, a description of the most relevant functions, variables and rules needed to compile
a c++ project is given.

1.1 Auxiliary functions

The functions defined in JMakedefines are mainly functions for the treatment of strings of
characters. Among these functions one can find for instance the insert function, which inserts
a path in a string of paths and which can be used to update environmental variables such as
LD LIBRARY PATH or PATH. Another interesting function is the binary function, which given a list
of c++ source code files (with .cc extension) finds which files contain the int main method and
returns a list with the corresponding binary file names (ie, the same file names but without the
.cc extension).

2

1.2 Global variables

Variables related to the multiple actions that can be carried out by the Jpp makefiles are
defined inside JMakedefines. Some of them are mentioned in the following sections, and a brief
description of other which are relevant for the compilation of c++ projects is given in the appendix
2.2

1.3 Pattern rules

Several pattern rules are included in JMakerules that implement the compilation, linking and
document generation. The pattern rules for compiling c++ source code files into object files and
for linking of object files into binary files are shown below

#Compilation pattern rule

%.o: %.cc %.d

$(CXX) $(CXXFLAGS) $(CPPFLAGS) -c -o $@ $<

#Linking pattern rule

%: %.o

$(CXX) $(LDFLAGS) -o $@ $^ $(LOADLIBES)

CXX = g++ is the compiler and CXXFLAGS and CPPFLAGS are lists of options that can be passed
to the compiler and the preprocessor respectively. CXXFLAGS should include the list of paths
pointing to the location of the .hh files included in the c++ source code files that are compiled.
LDFLAGS is a list of paths pointing to the location of external libraries needed to link several
objects into an executable, and LOADLIBES is a list of external libraries. These variables are set
to some default values by JMakedefines which are listed on 2.2.

1.4 Native and Public file lists

JMakerules includes the definition of NATIVE and PUBLIC variables to store file lists. The native
file lists are reserved for those files existing in the directory from which JMakefile is called (or
”current directory”). The variable NATIVE SRCS will be filled with a list of all the files with
.cc extension, the variable NATIVE OBJS will contain the list of corresponding object file names,
and NATIVE BINS will contain a list of binary file names corresponding to every source file that
contains a main function (this is achieved thanks to the binary function described above). In
addition, NATIVE SCRIPTS conatins a lists of .sh files and NATIVE DOCS a list of .tex, .docx

and .pptx files. If the current directory is a sub-directory of $JPP DIR/software, then the lists
of files are stored in the public variables (PUBLIC SRCS, PUBLIC BINS...etc).

1.5 Phony targets

JMakedependencies includes the declaration of several phony targets. Among those, the most
relevant are default, all, install and clean. The default target (ie the first target appear-
ing in the makefile structure, which is the one that will be remade if no target is specified when

3

launching make) is default, which in turn has all and install as prerequisites. The prerequi-
sites of all are the NATIVE lists, and the prerequisites of install are the PUBLIC lists. Therefore,
by default all the files in the current directory are remade according to the corresponding pattern
rules.

2 Using JMakefile to build a c++ project

Since JMakefile implements the majority of the functions and rules needed by make to compile
and link c++ code, using it to build one’s own project is rather straightforward. One just have
to create a Makefile that includes JMakefile, where the compilation and linking variables are
accordingly updated with the desired library paths, include paths and external libraries. By
default, JMakefile doesn’t know which object files need to be linked into a binary file. If a
binary file is obtained from the compilation and linking of more than one source code file, the
user should specify this information in the Makefile. This is simply done by writing an explicit
rule with the final binary file as a target, the object files to be linked as prerequisites. JMakefile
will use the appropriate pattern rules to generate the object files and the final binary file. A
typical Makefile would be like this:

#My Makefile

include $(JPP_DIR)/JMakefile

LDFLAGS += -L/path/...

CXXFLAGS += -I/path/...

LOADLIBES += -l...

main: main.o lib1.o lib2.o ...etc

The first example included with this document consists on three c++ files plus a Makefile.
The c++ files consist on JMain.cc, where the main method calls the lib function that is defined
in JLib.hh and implemented in JLib.cc. The Makefile to build the JMain binary file is simply

#My Makefile

include $(JPP_DIR)/JMakefile
JMain: JMain.o JLib.o

The second example compiles the same binary file as in the first example, but following a
different strategy that better suits with the Jpp philosophy. This is, defining and implementing
the classes and functions in a single include file. In this case the project consists only on two c++

files plus the Makefile. The diference with respect to the previous example is that in this case
the JLib.cc file doesn’t exist, and both the definition and implementation of the lib function is
done inside JLib.hh. In this case the rules included in JMakefile are enough to build the only
the only file to be compiled is JMain.cc, and the Makefile can be simplified to a single line.

4

#My Makefile

include $(JPP_DIR)/JMakefile

2.1 Using JMakefiles to build Jpp for ANTARES

Jpp is developed for KM3NeT, but it is also suited for ANTARES. In the case that one wants to
apply Jpp to ANTARES, it is necessary to specify it at the time of building Jpp. This is done
by typing

make Antares

As a result, JMakefile will assign the value ANTARES to the variable NAMESPACE (whose default
vaule is KM3NET) which is passed to the preprocessor via the CXXFLAGS during the Jpp compilation.
As an example of how this variable is used in the Jpp libraries one can take a look for instance,
at the following lines in $JPP DIR/examples/JSirene/JPMT.hh

#include "JPhysics/Antares.hh"

#include "JPhysics/KM3NeT.hh"

...

...

using namespace NAMESPACE;

...

...

The c++ preprocessor will recognize and expand the macro NAMESPACE to the value chosen in
the Make execution. The ANTARES and KM3NET namespaces are defined in the $JPP DIR/software/

JPhysics/Antares.hh and $JPP DIR/software/JPhysics/KM3NeT.hh files respectively. They
mainly contain information about the PMT characteristics and water properties for each instru-
ment. Through a similar procedure, the number of PMTs is defined for each instrument in the
$JPP DIR/software/JDAQ/JDAQ.hh file.

2.2 Parallel processing

JMakefile is able to execute several recipes at the same time through the use of the -j option:

make -j

In the make language, the amount of recipes executed simultaneously is called the number of
job slots. This number can be chosen by writing an integer number after the -j option. If no
number is specified, the amount of job slots is not limited. The operative system will take care of
multitasking the number of requested job slots, and the gain in speed with respect to sequential
execution depends on the number of cores in the available in the CPU.

To see the effect of the -j option on the Jpp make procedure one can do the following test in
the compilation of a project,

5

time make

make clean

time make -j

and compare the needed time in both cases.

Appendix A: relevant variables defined in JMakefile

Here, a list of variables defined or updated in JMakedefines that one may need to use in an owns
Makefile is given.

Environmental variables

The envionrmental variables LD LIBRARY PATH and PATH are updated by JMakedefines:

• PATH: The path $ROOTSYS/bin is appended to the PATH

• LD LIBRARY PATH: The paths $ROOTSYS/lib , JPP LIB and AANET LIB are appended to
the LD LIBRARY PATH

Default g++ options

The default values of the compiler variables mentioned above include the following libraries and
paths

• CXXFLAGS include the following paths pointing to include files: JPP INCLUDE, ROOTINCL,

AANET INCLUDE(/evt /util), ANTARES INCLUDE.

• LDFLAGS include the following paths pointing to external libraries: JPP LIB, AANET LIB,

ANTARES LIB.

• LOADLIBES includes by default JPP LIBS and ROOTLIBS

see below for a description of these variables.

Jpp variables

• JPP INCLUDE = $JPP DIR/software: Path to the location of Jpp include files.

• JPP LIB = $JPP DIR/$SYSTEM/lib/: Path to Jpp libraries. Here, the SYSTEM = Linux is
another variable. The variables for different of these libraries are the following:

– JPP LIBS = -llang

– JDAQ LIBS = -lKM3NeTDAQROOT

– JDAQ CHSM = -lDAQ CHSM

– JTRIGGER LIBS = -ltriggerROOT

– JEVT LIBS = -levtROOT

6

– JAANET LIBS = -ljaanetROOT

– JCOMPAREHISTOGRAMS LIBS = -lcomparehistogramsROOT

– JMARKOV LIBS = -lmarkovROOT

aanet variables

• AANET INCLUDE = $JPP DIR/externals/aanet/: Path to the location of aanet .hh files.

• AANET LIB = $JPP DIR/externals/aanet/: Path to the aanet external libraries. The vari-
able containing the libraries is

– AANET LIBS = -laa

Database

• JDB INCLUDE = $JPP DIR/externals/dbclient/include

• JDB LIB = $JPP DIR/externals/dbclient/lib

– JDB LIBS = -lKM3NeTDBClient

Antares

• ANTARES INCLUDE = $JPP DIR/externals/

• JDB LIB = $JPP DIR/externals/antares-dataformat/

– ANTARES LIBS = -lAntaresDAQROOT

ROOT

• ROOTLIBS = $ROOTSYS/bin/root-config --libs

• ROOTGLIBS = $ROOTSYS/bin/root-config --glibs

• ROOTINCL = $ROOTSYS/bin/root-config --cflags

• ROOTCINTFLAGS = -I$(JPP INCLUDE) -DNAMESPACE=ANTARES / KM3NeT

7

