JNanobeacons. A Jpp package for KM3NeT inter-DOM

time calibration and more.

Rodrigo G. Ruiz

November 11, 2025

Abstract

This note describes the analysis of the KM3NeT nanobeacon runs to perform the inter-DOM time

calibration, and the tools developed with that purpose.

1 Introduction

The time calibration of a KM3NeT Detection Unit (DU) consists on finding the ¢, for each Photo
Multiplier Tube (PMT) in the DU. The tq of the i*® PMT in the DU is measured in nanoseconds.
It is the time correction that should be added to the raw times of the hits recorded by the PMT in
order to get physical times that are consistent with the times of the rest of the hits in the DU:
phys = traw + 1 (1)
The time calibration of a DU is divided into two different stages: intra-DOM time calibration,
and inter-DOM time calibration. The former is performed independently for each DOM in the DU.
It consists on finding the to for all the PMTs in a DOM, ensuring that the physical times of the hits
recorded by the 31 PMTs of the DOM will be consistent with each other. The intra-DOM calibration
is performed using the optical background and it is described in reference REF. Both of them are
carried out in the dark room before the DU is deployed, and periodically after the DU is deployed in

the sea water. Figure [I]shows the different stages in the calibraiton of a DU.



DARK ROOM

DU AT INTRA-DOM INTER-DOM
WR RTT 40K LASER Matm
.detx
SEA
POSITION ‘ INTRA-DOM
) detx
Acoustic Beacons K
[ |
.detx
INTER-DOM

Nanobeacons u

l.detx
RECONSTRUCTION

Figure 1: Different stages in the calibraiton of a DU.

After the intra-DOM time calibration has been performed, the physical times of the hits recorded
by each DOM are self consistent, but the physical times of the hits recorded by two different DOMS in
the DU are not consistent with each other. To make the physical times of the hits recorded by DOMS
i and j consistent with each other, it is necessary to find an inter-DOM correction factor At(i, j).
The aim of the inter-DOM time calibration is to find this factor. When the DUs are in the sea water
this process can be carried out by the use of the nanobeacons REF installed in each DOM. It consits
on finding the correction factor Aty(4,j) that makes the physical times of the hits in DOMS i and
j to be consistent with the time of flight of the light from DOM ¢ to DOM j. This note explains
how this is done in the sea water, and the tools developed for this purpose. Sections [2 and [3] review
the concepts of the inter-DOM time calibration with nanobeacons, and section [4] explains the tools

developed for performing the corresponding analyses.



Figure 2: Plant view of the upper and lower hemispheres of a DOM. The magenta dot between PMTs

0, 3 and 4 in the upper hemisphere indicates the position of the nanobeacon

2 Inter-DOM time calibration with nanobeacons

Figure[2] shows the position where the nanobeacons are installed in each DOM. When a nanobeacon is
triggered it emits a light pulse (with a width of the order of {10 ns) that can be detected by different
PMTs in the DU. The inter-DOM calibration with nanobeacons is based on the measurement of the
arrival time of a nanobeacon pulse to PMTs located on different DOMs. Assuming that the distance
between the PMTs is known, one can compute the expected time difference between the arrival of
the puse to both PMTs (also called time of flight). A a result of the comparison of the expected time
difference with the observed time difference, a correction factor is obtained for the couple of DOMs
that host these PMTs. Formally, the procedure can be described as follows:

Let ¢ and j be two PMTs in two different DOMs from the DU, and assume that a nanobeacon
pulse is detected by both of them. One can use equation [I] to compute the physical time of the hits

produced by the pulse in both PMTs,

) _ ti + ti
phys raw 0
)

J 4] J
tphys - t"rj"aw + tO
Substracting both expressions one can obtain the physical time difference between the hits pro-

duced by the pulse in both PMTs as a function of the raw time differences and of the difference



between the ¢y of both PMTs,

Atphys = Atr(wz(iaj) + Ato(i,j), (3)

where A represents a difference (ie At(i,j) = t; —t;). Therefore, At,hys(7, ) should be the expected
time of flight mentioned above. Assuming that the positions of both PMTs r; and r; are well
determined, it can be computed as the time that light needs to propagate from r; to ; in the sea

water,

Atphys = d(ri,15)/cw- (4)

Cy 1s the speed of light in water. Therefore, equation aIIows to compute the quantity At (4, 5) from
the PMT positions and from their respective measurements of the nanobeacon pulse.

If the intra-DOM time calibration has been performed and the tys of the PMTs within each DOM
are consistent with each other, then the quantity Aty(é,j) can be used to appropriately shift the s
of all the PMTs in one of the DOMs. If this process is repeated iteratively with all the DOM pairs in
the DU, then the DU will be completely calibrated. The following example can help to visualize this

process.

2.1 A practical example

e Assume that both the acoustic positioning and the intra-DOM time calibration have been
performed in a DU, and that a detector file with the positions and tps of all the PMTs is

available.

e Assume that the nanobeacon of the DOM in floor 1 is flashed, and its pulse is detected by the
PMT 0 of DOM in floor 1, and by the PMT 22 of the DOM in floor 2.

e The observation of the nanobeacon pulse by PMTO0-F1 and PMT22-F2, the positions from the

detector file and equation [3| are used to compute the quantity
A(to)np = [Ato(PMT — 22F2,PMTO0 — F1)] y 5 -

This means that in order for the physical times of the hits recorded by these two PMTs to be
consistent, the ¢y of PMT22-F2 must be larger than the ty of PMTO0-F1 by an amount A(tg)n5-



e One can use the detector file to calculate the value of this same quantity from the ¢ys before
the nanobeacon calibration, A(tg)pr. If A(to)pr == A(to) N5, this means that the positions
and the values of the tys for both PMTs in the detector file would allow to calculate correctly
the time of flight of the nanobeacon pulse from one PMT to the other. Since the intra-DOM
calibration has already been performed, then nothing needs to be done because the PMTs in

each of the DOMS are correctly synchronized with each other.

o If A(to)pr! = A(to) nB, then the tgs in the detector file should be corrected. This correction is
done by leaving the tgs for the PMTs in DOM 1 as they are in the detector file, and by shifting
the tos of DOM2 by A(to)np — A(to)pr. Keep in mind that in order to keep the results of
the intra-DOM time calibration, the tgs of ALL the PMTs in DOM 2 must be corrected by the

same factor. At this point, the tgs of all the PMTs in DOMs 1 and 2 are consistent.

e The process is repeated by flashing the nanobeacon in floor 3 and detecting its signal with a

PMT in DOM 4, and so on.

Figure [3] shows the comparison of three different detector files for the ORCA detector. The three
of them are identical except for the tgs of the PMTs in DU2. One contains the tgs estimated from
calibrations in the dark room, other contains the values after the inter-DOM calibration with nanobea-
cons as described above, and the third one contains the tgs found by an alternative inter-DOM time
calibration performed in the sea from the reconstruction of atmospheric muons. The X axis represents
couples of consecutive DOMS. The Y axis in the upper pannel represents A(to)np , A(to)pr and
A(to). The lower pannel represents the diference between the points in the upper pannel, and the
straight lines show the mean difference for all the pairs in the DU. Following the description of the
calibration method given above, this plot shows that both inter-DOM time calibration methods found
differences with respect to the dark room calibration that needed to be corrected. The compari-
son of the detector files obtained after performing both the nanobeacons and the atmospheric muon

calibrations, show that their results are consistent with each other.

3 Optimization of the nanobeacon voltages

For a better accuracy in the inter-DOM calibration with nanobeacons, the nanobeacons of each DOM

in a DU should be appropriately tuned. The ideal voltage for a nanobeacon is that voltage that



75
70 ® Dark room
= ® Nanobeacons
=
£ 654 Muons
= ! e
> 60 1
° L ]
5554 @ ~ ° e
[ d ° R e ® 2 R O
50 4 (] c = " : )
45
44 ©
2
: 208 ° 0.5 o 0.t
S IR it Al - ""."I""S """"
S 04 [) L]
S ]
©
S —21 ® DR-NB
(_(3 MU - NB
4 ® DR-MU
A D X 9 0N D2 9 Q0 NIADNXO 0N
NTAT N WG G AT T YL N NN N YT LY
RENENINIPCIN SN N

Figure 3: Comparison of detector files after different calibrations for ORCA DU2.

produces the maximum amount of hits in the PMTs around it with an average ToT value that doesn't
exceed the 1 photo electron level (which, as suggested by some laboratory studies REF corresponds
to 26.4 ns).

The optimization of the nanobeacon voltages in a DU is performed by taking multiple runs, each
of them characterized by a voltage at which all the nanobeacons in the DU are tuned. Currently 9
runs are taken where the corresponding voltage values are 5.5V , 6V , 6.5V , 7V , 7.5V , 8V, 8.5V
, 10V and 15V. To optimize the voltage of a nanobeacon, one can look at the ToT distribution of
the hits that it produces in the closest PMT from the same DOM for each of the different runs (ie,
for each of the voltage values). Figure [4] shows these results for the nanobeacons in floors 3 and 10
of the ORCA DU2. Each of the curves shows the result of performing this operation different weeks.
These results tell that the behaviour of the nanobeacons is very stable with time and that in principle,

it suffices with performing the voltage optimization only once.

4 The Code

A set of tools has been developed and included in Jpp that allows to perform the inter-DOM time
calibration and to find the optimal nanobeacon voltage, as well as other studies related with the
nanobeacon pulses, such as studies related to the measurement of water properties.

Figure [5| show the flow diagrams for the voltage optimization and for the calibration analyses,

and the different programs involved. Automating these analyses would be rather simple for an ideal



—4— 23/10/2017 —$— 23/10/2017
NB: 3 30/10/2017 NB: 10 —— 30/10/2017
¢ 13/11/2017 ¢ 13/11/2017
@ 20/11/2017 - 20/11/2017
10? r

Mean ToT (ns)
Mean ToT (ns)

Voltage (V) Voltage (V)

Figure 4: Results of performing the nanobeacon optimization procedure four different times for two
nanobeacons in ORCA DU2. These curves show the mean ToT value of the hits produced by the
nanobeacon in the closest by PMT as a function of the nanobeacon voltage. The horizontal line

shows the 1 pe level. In this case, the nanobeacon voltages are tuned to 6.5V and 7V respectively.

detector where every PMT and nanobeacon worked well and stably, and where the nanobeacon signal
was observed as a nicely defined pulse by the different PMTs. But it may happen that certain pmts
or nanobeacons cease to work, that certain DOMs are switched off for whatever reason, or that the
nanobeacon signal is not very well detected by the PMTs. The programs depicted in figures [5] use
some common classes designed to make the code as compact as possible while accounting for different
eventualities and problems. The main difficulty is to decide at each time what PMTs and nanobeacons

to use for an analysis.

4.1 The common classes

The common classes mentioned above are four: the NBRun class, the SUPERMODULE class the SUPERPMT
class, and the NBPulse class. In the following, a brief description of each of them is given.

4.1.1 The NBPulse class

This class is devoted to the analysis and classification of the nanobeacon signal as observed by a
given PMT. All of its methods and attributes are realted to a 2D histogram with the ToT and time

distribution for the hits recorded by the PMT during a time window wide enough to include the hits



VOLTAGE OPTIMIZATION CHAIN TIME CALIBRATION CHAIN

v !
JPulseFinder e JPulseFinder
JVoltageOptimizer e JInterDomCal
.root file

v
.root file .root file
analysis info (peak info)
file .detx file
(list of optimal Voltages) (new t;s)

Figure 5: Flow diagrams containing the different programs that perform the inter-DOM time calibra-

v

txt file
compare .detx

tion and the nanobeacon voltage optimization. The red boxes indicate the output that these chains
are designed to produce. The orange boxes represent extra optional output. The green boxes represent

input files, and the blue boxes represent the programs.

produced by the nanobeacon. Some examples of such histograms and their projections onto the X and
Y axes are shown in figure[6] These plots also illustrate the three different categories into which the
pulses are classified. Their classification is done according to their time distribution (the projection
into the X axisﬂ At the time of performing an analysis, pulses classified as good will have the highest
priority, and weak or saturated pulses will be discarded.

The NBPulse class has several attributes related to the pulse properties and several analysis
methods. The two most important attributes of the peak at the time of performing the time calibration
and the nanobeacon voltage optimization are the arrival time of the pulse and its mean ToT. Currently
there are two analysis methods implemented in the class. The first analysis method is a fast analysis
which consists on projecting the 2D distribution on the X axis, and selecting a window of about 10
bins around the bin with maximum content of the resulting distribution. The pulse arrival time in this
case is defined as the bin center of the bin with maximum content, and the mean ToT distribution
is estimated as the mean of the distribution obtained by projecting the selected window of the 2D
distribution onto the Y axis. Figure ?7 left shows the result of applying this method to the histogram
in figure[6d] This analysis method is very fast and is useful for the tuning of the nanobeacon voltages,

which is based only on the mean ToT and does not use the pulse arrival time. A more sophisticated

IThis classification is currently done in a quite artisanal way, but so far it works quite well



Source: F10 Source: F11
10° 10%|
9
£ Target: F10 PMTO £ Target: F11 PMTO
S S
10" Voltage: 6.5V 10 Voltage: 8V
250 250
200 200
150 150
9 )
& £
= =
e L °
100
50"
P : : .
31700 31750 31800 31850 31900 31950 32000 32050 10 10’ 10° 35250 35300 35350 35400 35450 35500 35550 35600
Uncalibrated hit time [ns] modulo 10000 ns Counts

Uncalibrated hit time [ns] modulo 10000 ns

(a) good pulse (b) good pulse

Source: F10 Source: F7
100 10°
9 0
€ 0 Target: F10 PMTO €0 Target: F7 PMTO
S S
‘B‘M e ’ e
250 250
200 200
150 150
3 o
= =
s 'S
= =
100 100
50
©'31760 31750 31800 31850 31900 31950 32000 37050 71150 21200 71750 21300 21350 21400 21450 21500 0 010
Uncalibrated hit time [ns] modulo 10000 ns Uncalibrated hit time [ns] modulo 10000 ns Counts
(c) weak pulse (d) saturated pulse

Figure 6: Examples of nanobeacon pulse histograms produced by JPulseFinder and analyzed by the

NBPulse class.



250

200

Source: F7 2.5 T T T T .
= Model
Target: F7 PMTO ; ; Gauss component
Voltage: 10V 200 i B - Landau component | |
+ ¢ data
£ 15F -
=
—
(=]
=
(1)
£
5 10
05F
---------------- 1pe
O 3Ti50" 21200 71250 21300 21350 21400 21450 21500 T TE T ]
Uncalibrated hit time [ns] modulo 10000 ns Counts. 0-070 7*5 86 ‘é‘:‘;‘ 20 9‘5 10‘0 105 .l;()-u

le5

time [ns]

Figure 7: Examples of the two analysis methods implemented in the NBPulse class to estimate the
pulse arrival time. The left plot shows the result of the fast analysis. In this case, the pulse arrival
time is estimated from the bin with maximum content of the time distribution. The right plot shows
the result of the more sophisticated method. In this case the pulse arrival time is the time at which

the fitted model has its maximum.

way of estimating the pulse arrival time consists on fitting the hit time distribution to a mathematical
model around the bin with maximum content, and to get the time at which the fitted model has its

maximum value. Currently the following mathematical model is implemented:

M(ug,ag,m,al,oz):G(ug,ag)+a~L(m,Ul). (5)

It is a two component model where G(p4,04) represents a Gauss law , L(y, 0;) represents a Landau
law and « is a parameter that represents the mixing fraction of both components. An example of
this fit is shown in figure[7] This simple model is implemented using the ROOFIT libraries REF. This
libraries were chosen because they allow to implement easily more sophisticated models that could be
used to perform studies of water properties. Besides, the RooWorkspace class allows to easily store

all the information related to the fit and can be directly stored into a .root file.

10

115



4.1.2 The SUPERPMT class

The SUPERPMT class is very simple. It contains a JPMT and a NBPulse. It allows to associate the

analyzed pulses to a particular PMT in the detector.

4.1.3 The SUPERMODULE class

A particular characteristic of the different analyses involving nanobeacons is that they usually involve
at least two DOMs. A source DOM, and one or more target DOMs. The source DOM is the DOM
hosting the triggered nanobeacon. Usually, the emission time of the nanobeacon is estimated as the
arrival time of the pulse to one of the closest PMTs in the emitting DOM. This PMTs are also called
the reference PMTs. A target DOM is any DOM that contains PMTs sensitive to the nanobeacon
pulse.

A given DOM can act both as source and as target in the same analysis. When a DOM acts as a
source it can point to multiple target DOMs in the DU and similarly, it can be pointed to by multiple
source DOMs when it is acting as target. The SUPERMODULE class has been designed to implement
these relationships between a DOM and the rest of the DOMs in the DU.

A SUPERMODULE contains a JModule object and has a vector of reference SUPERPMTS (ie, those that
contain the NBPulses from its own nanobeacon detected by its own PMTs). It also contains a vector
of targets and a vector of sources. A target is a pair made up of a pointer to another SUPERMODULE
and a list of references to the corresponding target SUPERPMTS. Similarly, a source consists on a
pair formed by a pointer to a source SUPERMODULE a list of references to the corresponding target
SUPERPMTS. To clarify this, consider the SUPERMODULE corresponding to DOM in floor number 2.
A possible target of this SUPERMODULE is the SUPERMODULE in floor 3. The corresponding pair will
contain a pointer to the SUPERMODULE in floor 3, and an std: : vector of references to the SUPERPMTs
corresponding to the pulses emitted by the nanobeacon in floor 2, and detected by the PMTs in floor
3. On the other hand, a possible source for the SUPERMODULE in floor 2 is the nanobeacon from
floor 1. The corresponding pair will consist on a pointer to the SUPERMODULE in floor 1, and an
std: :vector containing references to the SUPERPMTs with the pulses emitted by the nanobeacon in
floor 1, and detected by the PMTs in floor 2.

The SUPERMODULE class contains methods to filter sources, targets and reference SUPERPMTs

according to the quality of their NBPulses.

11



The the initialization and a coherent setting of references between the different SUPERMODULE

objects in the DU are implemented in the NBRun class.

4.1.4 The NBRun class

The NBRun class intended to perform the analysis of a nanobeacon run for a given DU in a detector.
Therefore, a nanobeacon run is instantiated with a JDetector, a DU number and the path to a
file containing the nanobeacon pulses in the different PMTs from the detector, such as the ones
shown in figure E] When the NBRun class is instantiated, it creates a vector of references to the
18 SUPERMODULEs in the DU. For each of them, it sets the vectors of possible sources and targets
accordingly. A program was included in the Tests directory to show that these references are set
coherently.

The NBRun class also contains the implementation of the different functions that read and analyze

the file containing the nanobeacon pulses.

4.2 JPulseFinder
4.2.1 What does it do?

JPulsefinder is the first program in the analysis chain. It uses a .detx file and a .root file from
a KM3NeT nano beacon run. It produces 2D histograms as the ones in figure [f] for all the possible
combinations of source nanobeacon and target PMTs in the DU and store them in a new .root file
for its posterior analysis.

The complete list of options that JInterDomCal can receive through the command line are the

following
-a <input detector file>
-f <path to input .root file>
-s <number of the DU to calibrate>
-0 <name of out .root file>

-V <voltage of the nanobeacons>

12



-p <pulse_period_16ns>
-d <overall_delay_16ns>

-stagger <stagger_16ns>

The arguments -a , -f and -s are mandatory. Without specifying them, the program won't run.
The option -o is not mandatory. In case that a name for the output file is not provided, a file named
out.root will be produced in the same path where the binary JPulsefinder is. The same situation
holds for the rest of the arguments, which are set to 0 by default. The last arguments are related to

how the nanobeacon runs are set, and are discussed below.

4.2.2 How does it work?

The settings of a nanobeacon run include several parameters that can be modified. In order prevent the
simultaneous arrival of the signal emitted by different nanobeacons at the same PMT, the nanobeacons
are not flashed at the same time. Instead, the nanobeacons are flashed in ascending order from the
bottom to the top floor of the string. Each pair of consecutive nanobeacons is flashed with a time
difference called stagger time. This iterative procedure is known as the staggering method.

These concepts are depicted in figure [7?] This figure shows a hypothetical time distribution of
the hits detected by a PMT, where the contribution of two nanobeacons that are staggered by 100
ns is visible. In this example, each nanobeacon emits pulses with a period of 200 ns. If the stagger
time and the pulse period are chosen appropriately, the the contribution of each nanobeacon to the
hits recorded by the PMT can be isolated. The main difference of this hypothetical example with
respect to reality is that with the used settings, the PMTs detect only about one hit per nanobeacon
pulse, and the single pulses are not visible as they are represended in figure [7?] This means that
in practice it is impossible to work with the signal produced by the single nanobeacon pulses. But
because the nanobeacons emit pulses periodically, this issue can be easily solved. If instead of plotting
the distribution of hit times one represents the distribution of the reminder of the hit time divided by
the pulse period (ie the modulo function), then the contribution of all the nanobeacon pulses would
be cumulated together in a peak with much more statistics. This is shown in figure [7?] where the
contribution of the 4 pulses from figure [77] are gathered in a single peak for each nanobeacon, with

4 times more statistics.

13



number of hits

IS
=3
=3

w w

=3 o

=3 =3
! !

IN]

a

o
!

20!

—

7]

o
L

10

5

0

0

0

0

IN
o
S

—— Nanobeacon A —— Nanobeacon A
Nanobeacon B | Nanobeacon B

number of hits

= N N w w
I 1S} a S a
o 5} o 5} o

-

o

S
L

0 100 200 3 0 600 700

00 400 50! 800 0 100 200 300 400 500 600 700 800
hit time [ns] hit time % pulse period [ns]

w
o o
S —

Figure 8: Hypothetical representation of the staggering technique, and how to gather the contribution

of all the nanobeacon pulses into a single peak with larger statistics. See the text.

The argument -stagger specifies the stagger time in units of 16 ns. Additionally there can be a
overall delay with respect to the beginning of a timeslice, which corresponds to the -d option. When
they are triggered, nanobeacons emit pulses with a period corresponding to the -p option (should be
given in units of 16 ns). With the current settings, -stagger = 3520, -d = 0 and -p = 6520.

JPulseFinder is a modified version of the MBeaconLite program REF, which is suited for
the current framework. What it does is to use the stagger time and the pulse period to isolate the
contribution of each nanobeacon to each PMT as described in the hypothetical example above. It
saves each individual contribution to a separate 2D histogram where the distribution of the ToT
distribution of the hits is also represented in addition to the reminder of the hit time divided by the
pulse period. For each histogram, the time range can be defined by using the stagger and overall
delay times together with the positions of the nanobeacons and the PMTs in the detector. To fill
these histograms the program loops over all the time slices of the run. For each hit it reads its time
and ToT values and uses this information to fill the histograms for all the nanobeacons and the PMT
that recorded the hit. If the time range of the different histograms has been correctly defined, the
contribution of each hit will be visible only in the histogram for the nanobeacon that produced it. For

the rest of the histograms, the hit will be allocated in the underflow or overflow bins.

14



4.3 JInterDomCal
4.3.1 What does it do?

As figure ?? shows, the JInterDomCal program needs a .detx file as well as a .root file as inputs.
The detector file contains the positions of the PMTs and their tys, and the .root file contains the 2D
histograms produced by JPulseFinder with the peaks observed by each PMT from each nanobeacon.
This program performs the inter-DOM time calibration and produces a new .detx file which is a copy
of the input .detx, but with the tgs of the PMTs modified following the procedure described in
section 2] Additionally, it can produce a .txt file with a comparison of the new and old detector
files, and a .root file containing extra information about the peaks used for the calibration.

The complete list of options that JInterDomCal can receive through the command line are the

following

-a <input detector file>

-f <path to input .root file>

-s <number of the DU to calibrate>
-x <name of out .detx>

-t <name of out .txt file>

-r <name of out .root file>

-u <up hemisphere pmts option>

-d <down hemisphere pmts option>
-n <maximum number of neighbors>

-1 <peak analysis level>

The options —a , -f , -s are mandatory. Without these arguments the program won't run. The
option -x is not mandatory. In case that a name for the output detector file is not provided, a

file named out.detx will be produced in the same path where the binary JInterDomCal is. The

15



Figure 9: Different choices for the arguments -u and -d

arguments -t , -r are optional. If they are not provided the corresponding files won't be producetﬂ
The arguments -u , -d represent options to indicate JInterDomCal which PMTs (or which not)
to use in the upper and lower hemisphere to perform the calibration. The possible choices for these
arguments are given by different integer values and are summarized in figure[9] The argument -n allows
to limit the maximum distance between source and target DOMs when performing the calibration.
The default value is set to 2. Finally, the argument -1 allows to choose how the nanobeacon pulses
are analyzed. It's value is also an integer number, and currently two possibilities are implemented: -1
= 0 and -1 = 1, which correspond respectively to the fast and more sophisticated analyses described

in section The default option is set to 0.

4.3.2 How does it work?

The program is rather short. It's main stages are the following:

1. Read input options

2The function that produces the optional .root file with the analysis info. is not yet implemented

16



2. Instantiation of a NBRun with the user options
3. Analysis of the NBRun according to the user options
4. Generate a new detector according to the results of the previous step

5. Write output

During the analysis of the run, the code selects pairs of DOMS that are as close as possible. For
each pair of DOMs, the code analyzes each possible combination of reference and target SUPERPMTs
that are classified as good. A correction factor is computed for each pair as described in section [2]
and the tgs of the detector are updated by using the median correction. Note that if one gets too

conservative with respect to the options -n , -u and -d some DOMs may not be calibrated.

4.4 JVoltageOptimizer

4.4.1 What does it do?

As figure ?? shows, JVoltageOptimizer uses the result of multiple nanobeacon runs analyzed by
JPulseFinder to find the optimal voltage at which each nanobeacon in the DU should be tuned.
It returns a .txt file with a list of nanobeacons and voltages. Optionally, it produces a .root
file containing some extra information related to the optimization process, and a second .root file
containing the pulses emitted by the nanobeacons tuned at the optimal voltage that can be used by
JInterDomCal to calibrate the DU. The command line arguments for JVoltageOptimizer are the

following:
-a <input detector file>
-f <list of paths to .root files>
-s <number of the DU to analyze>
-t <name of out .txt file>
-0 <name of out .root file with extra info>

-c <name of out .root file for calibration>

17



-u <up hemisphere pmts option>
-d <down hemisphere pmts option>
-1 <peak analysis level>

-n <maximum DOM distance>

-S <saturation ToT value>

The arguments -a , -f , -s , -u , -d , -1 and -n have a similar meaning that those for
JInterDomCal. -t is for the name of the output file with the optimal nanobeacon voltages. By
default a file named out.txt is produced in the path where the binary JVoltageOptimizer is.
-0 and -c are respectively the names of the optional output files with extra information about the
optimization process and for the calibration. If those arguments are not provided, the files won't be
produced. The argument -S defines the nanobeacon saturation voltage, which by default is set to

26.4 ns. The optional .root file contains a tree with a branch for each nanobeacon.

4.4.2 How does it work?

The results of JVoltageOptimizer are also based on the analysis of the nanobeacon signal imple-
mented in the NBRun class. For each nanobeacon, the program finds the mean of the ToT distribution
for the hits produced in each of its reference PMTs, and the average of these values is stored to find
the optimal voltage. If the —o option is chosen, a tree is created which contains a branch for each
nanobeacon. Each event in the tree corresponds to a different run (voltage), and contains the average

ToT, its standard deviation and the voltage of the run. This tree allows to make plots as the ones in

figure

5 Scripts

Two scripts are included in $JNanoBeacons/Scripts. The script Calibrate.sh runs the different
programs involved in the calibration chain, and the script Optimize _Voltage.sh does the same for
the voltage optimization. In each case the user needs to specify the run number of the runs involved

in the analysis, as well as the different command line arguments. Both scripts download from irods

18



the .root files corresponding to the needed runs, and delete them after they have been analyzed.
The idea is to use these scripts to regularly perform the calibration and the voltage optimization every

time that a DU is deployed in the sea water.

6 Example output

Two example plots from the calibration chain, specifically from JinterDomCal.

65

60

At (ns)
{ ]
o
L J
o

50 8 o S

451 @ Deployment K40 calibration :
@® Nanobeacon calibration
2.0

median difference K40 - NB
1.54 == atmospheric muon offset

1.01

0.51

NB Aty (ns)

0.0 " ngym s o o o o e o e e o e o )y g g

—-0.51

K40 At -

—-1.04

—-1.51

-2.0 R A S N R R T S L . - —
T % 5 6 A LB 9 SN D e 6 A
G I R S AU O SO LA R O L A
RAEEN RN SN RN RN RN RN

DOM pairs
Figure 10: Comparison of the inter-DOM time offsets obtained with the nano-beacon analysis with
the K40 analysis prior to deployment of ORCA DU5. The upper panel shows the difference between
t0 difference for each pair of consecutive DOMs for both calibrations. The lower panel shows the
difference between both data sets in the upper panel. The green dashed line indicates the median
difference between both data sets. For the sake of comparison with other calibration procedures, the
red line has been added indicating the inter-DOM time offset for the same DU as found by the method
based on the reconstruction of atmospheric muons (https://elog.km3net.de/Calibration/139). These

results do not account for the systematic uncertainties in the position of the DOMs.

19



2.0

g 1.5

- 'y 'y

b3

S 1.01 s + °

3 ° ®

8 °

8 o5+ . ° $

c [ ] o o ®

©

= [0 )0 [ i NS KR S IS DN IR RUNS. AP S N I S P S V" —

o ’ ° °

< ° °

o _ i [ ] @

3 -05

€ [ °

(]

€ —1.01 LJ °

3 DU2

o 'y

=1 e DU3

g —1.5

a ® DU4

DU5
_20 T T T T T T T T T T T T T T T T T
RS BN oS TSP NN
~

DOM pairs

Figure 11: Difference between the inter-DOM time calibration found off-shore with nano-beacons
and on-shore with the K40 analysis, for multiple detection units in the ORCA detector. The plot

corresponds with the lower panel from figur@

20



	Introduction
	Inter-DOM time calibration with nanobeacons
	A practical example

	Optimization of the nanobeacon voltages
	The Code
	The common classes
	The NBPulse class
	The SUPERPMT class
	The SUPERMODULE class
	The NBRun class

	JPulseFinder
	What does it do?
	How does it work?

	JInterDomCal
	What does it do?
	How does it work?

	JVoltageOptimizer
	What does it do?
	How does it work?


	Scripts
	Example output

