1 #ifndef __JFIT__JGRADIENT__ 
    2 #define __JFIT__JGRADIENT__ 
   21 namespace JPP { 
using namespace JFIT; }
 
   40     virtual void apply(
const double step) = 0;
 
   48     public std::shared_ptr<JParameter_t>
 
   91               const int    debug    = 3) :
 
  123         return numeric_limits<double>::max();
 
  128       const size_t N = this->size();
 
  133       for (
size_t i = 0; i != N; ++i) {
 
  152         for (
double ds = 1.0; ds > 1.0e-3; ) {
 
  154           this->
move(+1.0 * ds);
 
  158           DEBUG(
"chi2[3]  " << setw(4) << m << 
' ' << 
FIXED(12,5) << chi2[3] << 
' ' << 
FIXED(12,5) << ds << endl);
 
  160           if (chi2[3] < chi2[2]) {
 
  184               for ( ; m != 0; --m) {
 
  185                 this->
move(-1.0 * ds);
 
  192           this->
move(-1.0 * ds);
 
  194           if (chi2[2] < chi2[3]) {
 
  202             const double f21 = chi2[2] - chi2[1];   
 
  203             const double f23 = chi2[2] - chi2[3];   
 
  205             const double xs  =  0.5 * (f21 - f23) / (f23 + f21);
 
  207             this->
move(+1.0 * xs * ds);
 
  211             if (chi2[3] < chi2[2]) {
 
  217               this->
move(-1.0 * xs * ds);
 
  232         if (fabs(chi2[2] - chi2[0]) < 
epsilon * 0.5 * (fabs(chi2[0]) + fabs(chi2[2]))) {
 
  244         for (
size_t i = 0; i != N; ++i){
 
  255         for (
size_t i = 0; i != N; ++i){
 
  257           H[i] =  G[i] + dgg * 
H[i];
 
  287       const size_t N = this->size();
 
  299       for (
size_t i = 0; i != N; ++i) {
 
  300         if ((*
this)[i].name.size() > width) {
 
  301           width = (*this)[i].name.size();
 
  307       for (
size_t i = 0; i != N; ++i) {
 
  309         if ((*
this)[i].value != 0.0) {
 
  311           (*this)[i]->apply(+0.5 * (*
this)[i].value);
 
  315           (*this)[i]->apply(-0.5 * (*
this)[i].value);
 
  316           (*this)[i]->apply(-0.5 * (*
this)[i].value);
 
  322           (*this)[i]->apply(+0.5 * (*
this)[i].value);
 
  324           DEBUG(setw(width) << left << (*
this)[i].name << right << 
' ' << 
FIXED(12,5) << (*
this)[i].value << 
' ' << 
FIXED(12,5) << 
gradient[i] << endl);
 
  334       DEBUG(setw(width) << left << 
"|gradient|" << right << 
' ' << 
FIXED(12,5) << sqrt(V) << endl);
 
  348         for (
size_t i = 0; i != this->size(); ++i) {
 
  349           (*this)[ i ]->apply((*
this)[ i ].value * 
gradient[ i ] * factor);
 
  351       } 
else if (factor < 0.0) {
 
  352         for (
size_t i = this->size(); i != 0; --i) {
 
  353           (*this)[i-1]->apply((*
this)[i-1].value * 
gradient[i-1] * factor);
 
General purpose messaging.
 
#define DEBUG(A)
Message macros.
 
Auxiliary classes and methods for linear and iterative data regression.
 
double getChi2(const double P)
Get chi2 corresponding to given probability.
 
static const double H
Planck constant [eV s].
 
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
 
Auxiliary data structure for floating point format specification.
 
size_t Nmax
maximum number of iterations
 
void move(const double factor)
Move.
 
std::vector< double > gradient
 
double evaluate(const T &getChi2)
Evaluate gradient.
 
double operator()(const T &getChi2)
Fit.
 
JGradient(const size_t Nmax=std::numeric_limits< size_t >::max(), const size_t Nextra=0, const double epsilon=1.0e-4, const int debug=3)
Constructor.
 
size_t numberOfIterations
 
size_t Nextra
maximum number of extra steps
 
Auxiliary data structure for editable parameter.
 
JModifier_t(const std::string &name, JParameter_t *parameter, const double value)
Constructor.
 
Auxiliary data structure for fit parameter.
 
virtual void apply(const double step)=0
Apply step.
 
virtual ~JParameter_t()
Virtual destructor.
 
Auxiliary data structure for floating point format specification.