Jpp master_rocky-44-g75b7c4f75
the software that should make you happy
Loading...
Searching...
No Matches
JFIT::JGandalf< JModel_t > Class Template Reference

Fit method based on the Levenberg-Marquardt method. More...

#include <JGandalf.hh>

Inheritance diagram for JFIT::JGandalf< JModel_t >:
JEEP::JMessage< T > JROOT::JRootfit_t< JFs_t > JROOT::JRootfit< JFs_t >

Classes

struct  result_type
 Data structure for return value of fit function. More...
 

Public Types

typedef JFIT_LOCAL::JTypedef_t< JModel_t >::parameter_type parameter_type
 Data type of fit parameter.
 

Public Member Functions

 JGandalf ()
 Default constructor.
 
template<class JFunction_t , class T , class ... Args>
result_type operator() (const JFunction_t &fit, T __begin, T __end, Args ...args)
 Multi-dimensional fit of multiple data sets.
 

Public Attributes

std::vector< parameter_typeparameters
 fit parameters
 
int numberOfIterations
 number of iterations
 
double lambda
 control parameter
 
JModel_t value
 value
 
JModel_t error
 error
 
JMATH::JMatrixNS V
 Hesse matrix.
 

Static Public Attributes

static int MAXIMUM_ITERATIONS = 1000
 maximal number of iterations
 
static double EPSILON = 1.0e-3
 maximal distance to minimum
 
static bool EPSILON_ABSOLUTE = false
 set epsilon to absolute difference instead of relative
 
static double LAMBDA_MIN = 0.01
 minimal value control parameter
 
static double LAMBDA_MAX = 100.0
 maximal value control parameter
 
static double LAMBDA_UP = 10.0
 multiplication factor control parameter
 
static double LAMBDA_DOWN = 10.0
 multiplication factor control parameter
 
static double PIVOT = std::numeric_limits<double>::epsilon()
 minimal value diagonal element of Hesse matrix
 
static int debug = 0
 debug level (default is off).
 

Private Member Functions

void reset ()
 Reset current parameters.
 
template<class JFunction_t , class T , class ... Args>
void update (const JFunction_t &fit, T __begin, T __end, Args ...args)
 Recursive method to update current parameters.
 
template<class JFunction_t >
void update (const JFunction_t &fit)
 Termination method to update current parameters.
 

Static Private Member Functions

static double get (const JModel_t &model, double JModel_t::*parameter)
 Read/write access to parameter value by data member.
 
static double & get (JModel_t &model, double JModel_t::*parameter)
 Read/write access to parameter value by data member.
 
static double get (const JModel_t &model, const size_t index)
 Read/write access to parameter value by index.
 
static double & get (JModel_t &model, const size_t index)
 Read/write access to parameter value by index.
 
static double get (const JModel_t &model, const int index)
 Read/write access to parameter value by index.
 
static double & get (JModel_t &model, const int index)
 Read/write access to parameter value by index.
 

Private Attributes

std::vector< double > h
 
JMATH::JVectorND x
 
struct { 
 
   result_type   result 
 
current 
 
struct { 
 
   JModel_t   value 
 
   result_type   result 
 
previous 
 

Detailed Description

template<class JModel_t>
class JFIT::JGandalf< JModel_t >

Fit method based on the Levenberg-Marquardt method.

The template argument refers to the model that should be fitted to the data.
This data structure should have arithmetic capabilities.

The data member JGandalf::value corresponds to the start c.q. final value of the model of the fit procedure and JGandalf::error to the uncertainties.
The co-variance matrix is stored in data member JGandalf::V.
The data member JGandalf::parameters constitutes a list of those parameters of the model that should actually be fitted.
For this, the model should contain the type definition for parameter_type.
Normally, this type definition corresponds to a pointer to a data member of the model.
If not defined, the parameters are assumed to be data members of type double.
Alternatively, the type definition can be size_t or int.
In that case, the model should provide for the element access operator[].
The first template parameter in the function operator should provide for an implementation of the actual fit function.
This function should return the data type JGandalf::result_type.
This data structure comprises the values of the chi2 and the gradient for a given data point.
The function operator returns the minimal chi2 and summed gradient of all data points.

Definition at line 41 of file JRegressorHelper.hh.

Member Typedef Documentation

◆ parameter_type

template<class JModel_t >
JFIT_LOCAL::JTypedef_t<JModel_t>::parameter_type JFIT::JGandalf< JModel_t >::parameter_type

Data type of fit parameter.

Definition at line 95 of file JGandalf.hh.

Constructor & Destructor Documentation

◆ JGandalf()

template<class JModel_t >
JFIT::JGandalf< JModel_t >::JGandalf ( )
inline

Default constructor.

Definition at line 143 of file JGandalf.hh.

144 {}

Member Function Documentation

◆ operator()()

template<class JModel_t >
template<class JFunction_t , class T , class ... Args>
result_type JFIT::JGandalf< JModel_t >::operator() ( const JFunction_t & fit,
T __begin,
T __end,
Args ... args )
inline

Multi-dimensional fit of multiple data sets.

The fit function should return the chi2 as well as the partial derivatives for the current value of the model and a given data point.

Parameters
fitfit function
__beginbegin of data
__endend of data
argsoptional data
Returns
chi2 and gradient

Definition at line 160 of file JGandalf.hh.

161 {
162 using namespace std;
163 using namespace JPP;
164
165 // note that all model values should be assigned to the start value of the model before use
166 // because the actual list of model parameters can vary from fit to fit
167 // (e.g. if model consists of a container).
168
169 const size_t N = parameters.size();
170
171 V.resize(N);
172 h.resize(N);
173 x.resize(N);
174
175 previous.result.chi2 = numeric_limits<double>::max();
176
177 current.result.chi2 = numeric_limits<double>::max();
178 current.result.gradient = value;
179 current.result.gradient = zero;
180
181 error = value;
182 error = zero;
183
185
187
188 DEBUG("step: " << numberOfIterations << endl);
189
190 reset();
191
192 update(fit, __begin, __end, args...);
193
194 DEBUG("lambda: " << FIXED(12,5) << lambda << endl);
195 DEBUG("chi2: " << FIXED(12,5) << current.result.chi2 << endl);
196
197 if (current.result.chi2 < previous.result.chi2) {
198
199 if (numberOfIterations != 0) {
200
201 const double tolerance = EPSILON * (EPSILON_ABSOLUTE ? 1.0 : fabs(previous.result.chi2));
202
203 if (fabs(previous.result.chi2 - current.result.chi2) <= tolerance) {
204
205 // normal end
206
207 const result_type result = current.result;
208
209 reset();
210
211 update(fit, __begin, __end, args...);
212
213 try {
214 V.invert();
215 }
216 catch (const exception& error) {}
217
218 for (size_t i = 0; i != N; ++i) {
219 get(error, parameters[i]) = sqrt(V(i,i));
220 }
221
222 return result;
223 }
224
225 if (lambda > LAMBDA_MIN) {
227 }
228 }
229
230 // store current values
231
232 previous.value = value;
233 previous.result = current.result;
234
235 } else {
236
237 value = previous.value; // restore value
238
239 lambda *= LAMBDA_UP;
240
241 if (lambda > LAMBDA_MAX) {
242 break;
243 }
244
245 reset();
246
247 update(fit, __begin, __end, args...);
248 }
249
250 DEBUG("Hesse matrix:" << endl << V << endl);
251
252 // force definite positiveness
253
254 for (size_t i = 0; i != N; ++i) {
255
256 if (V(i,i) < PIVOT) {
257 V(i,i) = PIVOT;
258 }
259
260 h[i] = 1.0 / sqrt(V(i,i));
261 }
262
263 // normalisation
264
265 for (size_t row = 0; row != N; ++row) {
266 for (size_t col = 0; col != row; ++col) {
267 V(row,col) *= h[row] * h[col];
268 V(col,row) = V(row,col);
269 }
270 }
271
272 for (size_t i = 0; i != N; ++i) {
273 V(i,i) = 1.0 + lambda;
274 }
275
276 // solve A x = b
277
278 for (size_t col = 0; col != N; ++col) {
279 x[col] = h[col] * get(current.result.gradient, parameters[col]);
280 }
281
282 try {
283 V.solve(x);
284 }
285 catch (const exception& error) {
286
287 ERROR("JGandalf: " << error.what() << endl << V << endl);
288
289 break;
290 }
291
292 // update value
293
294 for (size_t row = 0; row != N; ++row) {
295
296 DEBUG("u[" << noshowpos << setw(3) << row << "] = " << showpos << FIXED(15,5) << get(value, parameters[row]));
297
298 get(value, parameters[row]) -= h[row] * x[row];
299
300 DEBUG(" -> " << FIXED(15,5) << get(value, parameters[row]) << noshowpos << endl);
301 }
302
303 model(value);
304 }
305
306 // abnormal end
307
308 const result_type result = previous.result;
309
310 value = previous.value; // restore value
311
312 reset();
313
314 update(fit, __begin, __end, args...);
315
316 try {
317 V.invert();
318 }
319 catch (const exception& error) {}
320
321 for (size_t i = 0; i != N; ++i) {
322 get(error, parameters[i]) = sqrt(V(i,i));
323 }
324
325 return result;
326 }
#define DEBUG(A)
Message macros.
Definition JMessage.hh:62
#define ERROR(A)
Definition JMessage.hh:66
double lambda
control parameter
Definition JGandalf.hh:340
static double LAMBDA_MIN
minimal value control parameter
Definition JGandalf.hh:332
JMATH::JVectorND x
Definition JGandalf.hh:483
struct JFIT::JGandalf::@12 current
void reset()
Reset current parameters.
Definition JGandalf.hh:349
static double LAMBDA_DOWN
multiplication factor control parameter
Definition JGandalf.hh:335
std::vector< parameter_type > parameters
fit parameters
Definition JGandalf.hh:338
static double LAMBDA_UP
multiplication factor control parameter
Definition JGandalf.hh:334
int numberOfIterations
number of iterations
Definition JGandalf.hh:339
static bool EPSILON_ABSOLUTE
set epsilon to absolute difference instead of relative
Definition JGandalf.hh:331
std::vector< double > h
Definition JGandalf.hh:482
static double get(const JModel_t &model, double JModel_t::*parameter)
Read/write access to parameter value by data member.
Definition JGandalf.hh:412
static int MAXIMUM_ITERATIONS
maximal number of iterations
Definition JGandalf.hh:329
static double PIVOT
minimal value diagonal element of Hesse matrix
Definition JGandalf.hh:336
void update(const JFunction_t &fit, T __begin, T __end, Args ...args)
Recursive method to update current parameters.
Definition JGandalf.hh:369
result_type result
Definition JGandalf.hh:486
static double EPSILON
maximal distance to minimum
Definition JGandalf.hh:330
JModel_t value
value
Definition JGandalf.hh:341
JMATH::JMatrixNS V
Hesse matrix.
Definition JGandalf.hh:343
static double LAMBDA_MAX
maximal value control parameter
Definition JGandalf.hh:333
JModel_t error
error
Definition JGandalf.hh:342
struct JFIT::JGandalf::@13 previous
void model(JModel_t &value)
Auxiliary function to constrain model during fit.
Definition JGandalf.hh:56
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
Auxiliary data structure for floating point format specification.
Definition JManip.hh:448
void resize(const size_t size)
Resize matrix.
Definition JMatrixND.hh:446
void solve(JVectorND_t &u)
Get solution of equation A x = b.
Definition JMatrixNS.hh:308
void invert()
Invert matrix according LDU decomposition.
Definition JMatrixNS.hh:75

◆ reset()

template<class JModel_t >
void JFIT::JGandalf< JModel_t >::reset ( )
inlineprivate

Reset current parameters.

Definition at line 349 of file JGandalf.hh.

350 {
351 using namespace JPP;
352
353 current.result.chi2 = 0.0;
354 current.result.gradient = zero;
355
356 V.reset();
357 }
JMatrixND & reset()
Set matrix to the null matrix.
Definition JMatrixND.hh:459

◆ update() [1/2]

template<class JModel_t >
template<class JFunction_t , class T , class ... Args>
void JFIT::JGandalf< JModel_t >::update ( const JFunction_t & fit,
T __begin,
T __end,
Args ... args )
inlineprivate

Recursive method to update current parameters.

Parameters
fitfit function
__beginbegin of data
__endend of data
argsoptional data

Definition at line 369 of file JGandalf.hh.

370 {
371 for (T i = __begin; i != __end; ++i) {
372
373 const result_type& result = fit(value, *i);
374
375 current.result.chi2 += result.chi2;
376 current.result.gradient += result.gradient;
377
378 for (size_t row = 0; row != parameters.size(); ++row) {
379 for (size_t col = row; col != parameters.size(); ++col) {
380 V(row,col) += get(result.gradient, parameters[row]) * get(result.gradient, parameters[col]);
381 }
382 }
383 }
384
385 update(fit, args...);
386 }
JModel_t gradient
partial derivatives of chi2
Definition JGandalf.hh:136

◆ update() [2/2]

template<class JModel_t >
template<class JFunction_t >
void JFIT::JGandalf< JModel_t >::update ( const JFunction_t & fit)
inlineprivate

Termination method to update current parameters.

Parameters
fitfit function

Definition at line 395 of file JGandalf.hh.

396 {
397 for (size_t row = 0; row != parameters.size(); ++row) {
398 for (size_t col = 0; col != row; ++col) {
399 V(row,col) = V(col,row);
400 }
401 }
402 }

◆ get() [1/6]

template<class JModel_t >
static double JFIT::JGandalf< JModel_t >::get ( const JModel_t & model,
double JModel_t::* parameter )
inlinestaticprivate

Read/write access to parameter value by data member.

Parameters
modelmodel
parameterparameter
Returns
value

Definition at line 412 of file JGandalf.hh.

413 {
414 return model.*parameter;
415 }

◆ get() [2/6]

template<class JModel_t >
static double & JFIT::JGandalf< JModel_t >::get ( JModel_t & model,
double JModel_t::* parameter )
inlinestaticprivate

Read/write access to parameter value by data member.

Parameters
modelmodel
parameterparameter
Returns
value

Definition at line 425 of file JGandalf.hh.

426 {
427 return model.*parameter;
428 }

◆ get() [3/6]

template<class JModel_t >
static double JFIT::JGandalf< JModel_t >::get ( const JModel_t & model,
const size_t index )
inlinestaticprivate

Read/write access to parameter value by index.

Parameters
modelmodel
indexindex
Returns
value

Definition at line 438 of file JGandalf.hh.

439 {
440 return model[index];
441 }

◆ get() [4/6]

template<class JModel_t >
static double & JFIT::JGandalf< JModel_t >::get ( JModel_t & model,
const size_t index )
inlinestaticprivate

Read/write access to parameter value by index.

Parameters
modelmodel
indexindex
Returns
value

Definition at line 451 of file JGandalf.hh.

452 {
453 return model[index];
454 }

◆ get() [5/6]

template<class JModel_t >
static double JFIT::JGandalf< JModel_t >::get ( const JModel_t & model,
const int index )
inlinestaticprivate

Read/write access to parameter value by index.

Parameters
modelmodel
indexindex
Returns
value

Definition at line 464 of file JGandalf.hh.

465 {
466 return model[index];
467 }

◆ get() [6/6]

template<class JModel_t >
static double & JFIT::JGandalf< JModel_t >::get ( JModel_t & model,
const int index )
inlinestaticprivate

Read/write access to parameter value by index.

Parameters
modelmodel
indexindex
Returns
value

Definition at line 477 of file JGandalf.hh.

478 {
479 return model[index];
480 }

Member Data Documentation

◆ MAXIMUM_ITERATIONS

template<class JModel_t >
int JFIT::JGandalf< JModel_t >::MAXIMUM_ITERATIONS = 1000
static

maximal number of iterations

maximal number of iterations.

Definition at line 329 of file JGandalf.hh.

◆ EPSILON

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::EPSILON = 1.0e-3
static

maximal distance to minimum

maximal distance to minimum.

Definition at line 330 of file JGandalf.hh.

◆ EPSILON_ABSOLUTE

template<class JModel_t >
bool JFIT::JGandalf< JModel_t >::EPSILON_ABSOLUTE = false
static

set epsilon to absolute difference instead of relative

set epsilon to absolute difference instead of relative.

Definition at line 331 of file JGandalf.hh.

◆ LAMBDA_MIN

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::LAMBDA_MIN = 0.01
static

minimal value control parameter

Definition at line 332 of file JGandalf.hh.

◆ LAMBDA_MAX

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::LAMBDA_MAX = 100.0
static

maximal value control parameter

Definition at line 333 of file JGandalf.hh.

◆ LAMBDA_UP

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::LAMBDA_UP = 10.0
static

multiplication factor control parameter

Definition at line 334 of file JGandalf.hh.

◆ LAMBDA_DOWN

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::LAMBDA_DOWN = 10.0
static

multiplication factor control parameter

Definition at line 335 of file JGandalf.hh.

◆ PIVOT

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::PIVOT = std::numeric_limits<double>::epsilon()
static

minimal value diagonal element of Hesse matrix

minimal value diagonal element of matrix

Definition at line 336 of file JGandalf.hh.

◆ parameters

template<class JModel_t >
std::vector<parameter_type> JFIT::JGandalf< JModel_t >::parameters

fit parameters

Definition at line 338 of file JGandalf.hh.

◆ numberOfIterations

template<class JModel_t >
int JFIT::JGandalf< JModel_t >::numberOfIterations

number of iterations

Definition at line 339 of file JGandalf.hh.

◆ lambda

template<class JModel_t >
double JFIT::JGandalf< JModel_t >::lambda

control parameter

Definition at line 340 of file JGandalf.hh.

◆ value

template<class JModel_t >
JModel_t JFIT::JGandalf< JModel_t >::value

value

Definition at line 341 of file JGandalf.hh.

◆ error

template<class JModel_t >
JModel_t JFIT::JGandalf< JModel_t >::error

error

Definition at line 342 of file JGandalf.hh.

◆ V

template<class JModel_t >
JMATH::JMatrixNS JFIT::JGandalf< JModel_t >::V

Hesse matrix.

Definition at line 343 of file JGandalf.hh.

◆ h

template<class JModel_t >
std::vector<double> JFIT::JGandalf< JModel_t >::h
private

Definition at line 482 of file JGandalf.hh.

◆ x

template<class JModel_t >
JMATH::JVectorND JFIT::JGandalf< JModel_t >::x
private

Definition at line 483 of file JGandalf.hh.

◆ result

template<class JModel_t >
result_type JFIT::JGandalf< JModel_t >::result

Definition at line 486 of file JGandalf.hh.

◆ [struct]

struct { ... } JFIT::JGandalf< JModel_t >::current

◆ [struct]

struct { ... } JFIT::JGandalf< JModel_t >::previous

◆ debug

template<class T >
int JEEP::JMessage< T >::debug = 0
staticinherited

debug level (default is off).

Definition at line 45 of file JMessage.hh.


The documentation for this class was generated from the following files: