Jpp  master_rocky-43-ge265d140c
the software that should make you happy
Functions
JGradientFitToGauss.cc File Reference

Program to test JFIT::JGradient algorithm. More...

#include <string>
#include <iostream>
#include <iomanip>
#include <vector>
#include <cmath>
#include "TRandom3.h"
#include "JFit/JGradient.hh"
#include "JTools/JElement.hh"
#include "JTools/JQuantile.hh"
#include "JMath/JGauss.hh"
#include "JMath/JConstants.hh"
#include "Jeep/JPrint.hh"
#include "Jeep/JParser.hh"
#include "Jeep/JMessage.hh"

Go to the source code of this file.

Functions

int main (int argc, char **argv)
 

Detailed Description

Program to test JFIT::JGradient algorithm.

Author
mdejong

Definition in file JGradientFitToGauss.cc.

Function Documentation

◆ main()

int main ( int  argc,
char **  argv 
)

Definition at line 121 of file JGradientFitToGauss.cc.

122 {
123  using namespace std;
124  using namespace JPP;
125 
126  int numberOfEvents;
127  JGauss gauss;
128  JGauss precision;
129  UInt_t seed;
130  int debug;
131 
132  try {
133 
134  JParser<> zap("Program to test JGradient algorithm.");
135 
136  zap['n'] = make_field(numberOfEvents) = 0;
137  zap['@'] = make_field(gauss) = JGauss(0.0, 1.0, 1000.0, 10.0);
138  zap['e'] = make_field(precision) = JGauss(0.05, 0.05, 25.0, 25.0);
139  zap['S'] = make_field(seed) = 0;
140  zap['d'] = make_field(debug) = 3;
141 
142  zap(argc, argv);
143  }
144  catch(const exception& error) {
145  FATAL(error.what() << endl);
146  }
147 
148  gRandom->SetSeed(seed);
149 
150  if (numberOfEvents == 0) {
151 
152  buffer.push_back(element_type(-3.00000, 16.00000));
153  buffer.push_back(element_type(-2.50000, 22.00000));
154  buffer.push_back(element_type(-2.00000, 70.00000));
155  buffer.push_back(element_type(-1.50000, 152.00000));
156  buffer.push_back(element_type(-1.00000, 261.00000));
157  buffer.push_back(element_type(-0.50000, 337.00000));
158  buffer.push_back(element_type( 0.00000, 378.00000));
159  buffer.push_back(element_type( 0.50000, 360.00000));
160  buffer.push_back(element_type( 1.00000, 253.00000));
161  buffer.push_back(element_type( 1.50000, 129.00000));
162  buffer.push_back(element_type( 2.00000, 72.00000));
163  buffer.push_back(element_type( 2.50000, 22.00000));
164  buffer.push_back(element_type( 3.00000, 11.00000));
165 
166  JGradient gradient(1000000, 0, 1.0e-4, debug);
167 
168  // start values
169 
170  fit = JGauss(0.5, 0.5, 700.0, 0.0);
171 
172  gradient.push_back(JModifier_t("mean", new JGaussEditor(fit, JGauss(1.0, 0.0, 0.0, 0.0)), 1.0e-2));
173  gradient.push_back(JModifier_t("sigma", new JGaussEditor(fit, JGauss(0.0, 1.0, 0.0, 0.0)), 1.0e-2));
174  gradient.push_back(JModifier_t("signal", new JGaussEditor(fit, JGauss(0.0, 0.0, 1.0, 0.0)), 5.0e-0));
175  gradient.push_back(JModifier_t("background", new JGaussEditor(fit, JGauss(0.0, 0.0, 0.0, 1.0)), 5.0e-1));
176 
177  gradient(getChi2);
178 
179  } else {
180 
181  JQuantile Q[] = { JQuantile("mean "),
182  JQuantile("sigma "),
183  JQuantile("signal "),
184  JQuantile("background") };
185 
186  const size_t nx = 21;
187  const double xmin = -5.0;
188  const double xmax = +5.0;
189 
190  for (int i = 0; i != numberOfEvents; ++i) {
191 
192  STATUS("event: " << setw(10) << i << '\r'); DEBUG(endl);
193 
194  buffer.clear();
195 
196  for (double x = xmin, dx = (xmax - xmin) / (nx - 1); x < xmax + 0.5*dx; x += dx) {
197 
198  const double value = gauss(x);
199 
200  buffer.push_back(element_type(x, gRandom->Poisson(value)));
201  }
202 
203  JGradient gradient(1000000, 0, 1.0e-4, debug);
204 
205  // start values
206 
207  fit = JGauss(0.5, 0.5, 700.0, 0.0);
208 
209  gradient.push_back(JModifier_t("mean", new JGaussEditor(fit, JGauss(1.0, 0.0, 0.0, 0.0)), 1.0e-2));
210  gradient.push_back(JModifier_t("sigma", new JGaussEditor(fit, JGauss(0.0, 1.0, 0.0, 0.0)), 1.0e-2));
211  gradient.push_back(JModifier_t("signal", new JGaussEditor(fit, JGauss(0.0, 0.0, 1.0, 0.0)), 5.0e-0));
212  gradient.push_back(JModifier_t("background", new JGaussEditor(fit, JGauss(0.0, 0.0, 0.0, 1.0)), 5.0e-1));
213 
214  const double chi2 = gradient(getChi2);
215 
216  DEBUG("Final value " << fit << endl);
217  DEBUG("Chi2 " << chi2 << endl);
218 
219  Q[0].put(fit.mean - gauss.mean);
220  Q[1].put(fit.sigma - gauss.sigma);
221  Q[2].put(fit.signal - gauss.signal);
222  Q[3].put(fit.background - gauss.background);
223  }
224 
225  for (int i = 0; i != sizeof(Q)/sizeof(Q[0]); ++i) {
226  NOTICE((i == 0 ? longprint : shortprint) << Q[i]);
227  }
228 
229  for (int i = 0; i != sizeof(Q)/sizeof(Q[0]); ++i) {
230  ASSERT(fabs(Q[i].getMean()) < Q[i].getSTDev());
231  }
232 
233  ASSERT(Q[0].getSTDev() < precision.mean);
234  ASSERT(Q[1].getSTDev() < precision.sigma);
235  ASSERT(Q[2].getSTDev() < precision.signal);
236  ASSERT(Q[3].getSTDev() < precision.background);
237  }
238 
239  return 0;
240 }
double getMean(vector< double > &v)
get mean of vector content
std::ostream & shortprint(std::ostream &out)
Set short printing.
Definition: JManip.hh:144
std::ostream & longprint(std::ostream &out)
Set long printing.
Definition: JManip.hh:172
#define DEBUG(A)
Message macros.
Definition: JMessage.hh:62
#define STATUS(A)
Definition: JMessage.hh:63
#define ASSERT(A,...)
Assert macro.
Definition: JMessage.hh:90
#define NOTICE(A)
Definition: JMessage.hh:64
#define FATAL(A)
Definition: JMessage.hh:67
int debug
debug level
Definition: JSirene.cc:69
#define make_field(A,...)
macro to convert parameter to JParserTemplateElement object
Definition: JParser.hh:2142
Utility class to parse command line options.
Definition: JParser.hh:1698
const double xmax
Definition: JQuadrature.cc:24
const double xmin
Definition: JQuadrature.cc:23
double getChi2(const double P)
Get chi2 corresponding to given probability.
Definition: JFitToolkit.hh:56
double gauss(const double x, const double sigma)
Gauss function (normalised to 1 at x = 0).
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
Definition: JSTDTypes.hh:14
Conjugate gradient fit.
Definition: JGradient.hh:75
Auxiliary data structure for editable parameter.
Definition: JGradient.hh:49
double background
Definition: JGauss.hh:164
double signal
Definition: JGauss.hh:163
double mean
Definition: JGauss.hh:161
Gauss function object.
Definition: JGauss.hh:175
double sigma
sigma
Definition: JMathlib.hh:1665
Auxiliary data structure for running average, standard deviation and quantiles.
Definition: JQuantile.hh:46
void put(const double x, const double w=1.0)
Put value.
Definition: JQuantile.hh:133