84     int    scal  =  0xFFFFFFFF; 
 
   87   string  detectorFile_a;
 
   88   string  detectorFile_b;
 
   96     properties[
TCAL] = precision.tcal;
 
   97     properties[
PCAL] = precision.pcal;
 
   98     properties[
RCAL] = precision.rcal;
 
   99     properties[
ACAL] = precision.acal;
 
  100     properties[
CCAL] = precision.ccal;
 
  101     properties[
SCAL] = precision.scal;
 
  103     JParser<> zap(
"Auxiliary program to find differences between two detector files.");
 
  113   catch(
const exception &error) {
 
  114     FATAL(error.what() << endl);
 
  122     load(detectorFile_a, detector_a);
 
  129     load(detectorFile_b, detector_b);
 
  135   size_t numberOfPMTs = 0;
 
  137   bool is_equal = 
true;
 
  142   setFormat<JPosition3D>  (
JFormat_t(15, 9, std::ios::fixed | std::ios::showpos));
 
  146   if (detector_a.
getID() != detector_b.
getID()) {
 
  148     DEBUG(
"* Different detector identifiers "  
  149           << setw(5) << detector_a.
getID() << 
" (A) and " << endl 
 
  150           << setw(5) << detector_b.
getID() << 
" (B)."     << endl
 
  160     DEBUG(
"  * different UTM position: " 
  169   for (JDetector::iterator module = detector_a.begin(); module != detector_a.end(); ++module) {
 
  170     if (module->size() > numberOfPMTs) {
 
  171        numberOfPMTs = module->size();
 
  177   for (JDetector::iterator module = detector_a.begin(); module != detector_a.end(); ++module) {
 
  179     if (!module_router_b.hasModule(module->getID())) {
 
  181       DEBUG(
"* Module " << setw(10) << module->getID() << 
" is in A " << 
getLabel(*module) << 
" but not in B" << endl);
 
  187   for (JDetector::iterator module = detector_b.begin(); module != detector_b.end(); ++module) {
 
  189     if (!module_router_a.hasModule(module->getID())) {
 
  191       DEBUG(
"* Module " << setw(10) << module->getID() << 
" is in B " << 
getLabel(*module) << 
" but not in A" << endl);
 
  201   DEBUG(
"Comparing module by module." << endl);
 
  203   for (JDetector::iterator module_a = detector_a.begin(); module_a != detector_a.end(); ++module_a) {
 
  205     if (!module_router_b.hasModule(module_a->getID())) {
 
  212     const JModule* module_b = &module_router_b.getModule(module_a->getID());
 
  214     DEBUG(
"  Module " << setw(10) << module_a->getID());
 
  218     if (module_a->getLocation() == module_b->
getLocation()) {
 
  225       DEBUG(
"  * different location: " 
  227             << 
getLabel(*module_b) << 
" (B)" << endl);
 
  234     if (fabs(module_a->getT0() - module_b->
getT0()) > precision.acal) {
 
  236       DEBUG(
"  * different T0: "  
  237             << 
FIXED(12,3) << module_a->getT0() << 
" (A), " 
  238             << 
FIXED(12,3) << module_b->
getT0() << 
" (B) " 
  239             << 
", B - A " << module_b->
getT0() - module_a->getT0() << endl);
 
  246     if (module_a->getQuaternion() != 
JQuaternion3D(0.0, 0.0, 0.0, 0.0) &&
 
  250       DEBUG(
"  * different quaternion calibration: "  
  251             << module_a->getQuaternion() << 
" (A), " 
  262       DEBUG(
"  * different position: " 
  263             << module_a->getPosition() << 
" (A), "  
  272     if (module_a->size() != module_b->size()) {
 
  274       DEBUG(
"  * different number of PMTs: " 
  275             << module_a->size() << 
" (A), "  
  276             << module_b->size() << 
" (B)" << endl);
 
  283     if (!module_a->empty() &&
 
  284         !module_b->empty()) { 
 
  286       const JQuantile q = getQuantile(*module_a, *module_b);
 
  288       if (fabs(q.
getMean()) > precision.tcal) {
 
  290         DEBUG(
"  * different average t0: " 
  300     if (module_a->getStatus(precision.scal) != module_b->
getStatus(precision.scal)) {
 
  302       DEBUG(
"  * different status module " << module_a->getID() << 
": " 
  303             << module_a->getStatus() << 
" (A), "  
  314     for (
unsigned int pmt = 0; pmt != module_a->size() && pmt != module_b->size(); ++pmt) {
 
  316       const JPMT& pmt_a = module_a->getPMT(pmt);
 
  321         DEBUG(
"  * different identifier PMT " << setw(2) << pmt << 
": " 
  322               << setw(8) << pmt_a.
getID() << 
" (A" << 
FILL(2,
'0') << pmt << 
"), " << 
FILL()
 
  323               << setw(8) << pmt_b.
getID() << 
" (B" << 
FILL(2,
'0') << pmt << 
")"   << 
FILL()
 
  324               << 
", B - A " << pmt_b.
getID() - pmt_a.
getID()  
 
  333     for (
unsigned int pmt = 0; pmt != module_a->size() && pmt != module_b->size(); ++pmt) {
 
  335       const JPMT& pmt_a = module_a->getPMT(pmt);
 
  338       if (fabs(pmt_a.
getT0() - pmt_b.
getT0()) > precision.tcal) {
 
  340         DEBUG(
"  * different T0 PMT " << setw(2) << pmt << 
": " 
  343               << 
", B - A " << pmt_b.
getT0() - pmt_a.
getT0()  
 
  352     for (
unsigned int pmt = 0; pmt != module_a->size() && pmt != module_b->size(); ++pmt) {
 
  354       const JPMT& pmt_a = module_a->getPMT(pmt);
 
  361         DEBUG(
"  * different PMT position: " 
  372     for (
unsigned int pmt = 0; pmt != module_a->size() && pmt != module_b->size(); ++pmt) {
 
  374       const JPMT& pmt_a = module_a->getPMT(pmt);
 
  381       if ((1.0 - dot) > precision.rcal) {
 
  383         DEBUG(
"  * different PMT direction: " 
  394     for (
unsigned int pmt = 0; pmt != module_a->size() && pmt != module_b->size(); ++pmt) {
 
  396       const JPMT& pmt_a = module_a->getPMT(pmt);
 
  401         DEBUG(
"  * different status PMT " << setw(2) << pmt << 
": " 
  418     for (JDetector::iterator module = detector_a.begin(); module != detector_a.end(); ++module) {
 
  419       string.insert(module->getString());
 
  420       floor .insert(module->getFloor ());
 
  423     for (JDetector::iterator module = detector_b.begin(); module != detector_b.end(); ++module) {
 
  424       string.insert(module->getString());
 
  425       floor .insert(module->getFloor ());
 
  431             string.size(), -0.5, 
string.size() - 0.5,
 
  432             floor .size(), -0.5, floor .size() - 0.5);
 
  442     TH2D* X2  = (TH2D*) M2.Clone(
"X2" );
 
  443     TH2D* Y2  = (TH2D*) M2.Clone(
"Y2" );
 
  444     TH2D* Z2  = (TH2D*) M2.Clone(
"Z2" );
 
  445     TH2D* T2  = (TH2D*) M2.Clone(
"T2" );
 
  446     TH2D* RMS = (TH2D*) M2.Clone(
"RMS");
 
  447     TH2D* R2  = (TH2D*) M2.Clone(
"R2" );
 
  448     TH2D* QA  = (TH2D*) M2.Clone(
"QA" );
 
  449     TH2D* QB  = (TH2D*) M2.Clone(
"QB" );
 
  450     TH2D* QC  = (TH2D*) M2.Clone(
"QC" );
 
  451     TH2D* QD  = (TH2D*) M2.Clone(
"QD" );
 
  452     TH2D* Q2  = (TH2D*) M2.Clone(
"Q2" );
 
  454     for (JDetector::iterator module = detector_a.begin(); module != detector_a.end(); ++module) {
 
  455       if (!module_router_b.hasModule(module->getID()) ) {
 
  456         M2.Fill(module->getString(), module->getFloor(), -1.0);
 
  460     for (JDetector::iterator module = detector_b.begin(); module != detector_b.end(); ++module) {
 
  461       if (!module_router_a.hasModule(module->getID()) ) {
 
  462         M2.Fill(module->getString(), module->getFloor(), +1.0);
 
  467     for (JDetector::iterator module_a = detector_a.begin(); module_a != detector_a.end(); ++module_a) {
 
  469       if (!module_router_b.hasModule(module_a->getID())) {
 
  473       const JModule* module_b = &module_router_b.getModule(module_a->getID());
 
  475       for (
size_t i = 0; i != numberOfPMTs; ++i) {
 
  477         if (module_a->getFloor() != 0) {
 
  478           H1[module_a->getID()]->SetBinContent(i + 1, module_a->getPMT(i).getT0() - module_b->
getPMT(i).
getT0());
 
  482       X2 ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), module_a->getX() - module_b->
getX() + numeric_limits<double>::min());
 
  483       Y2 ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), module_a->getY() - module_b->
getY() + numeric_limits<double>::min());
 
  484       Z2 ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), module_a->getZ() - module_b->
getZ() + numeric_limits<double>::min());
 
  486       if (module_a->getFloor() != 0 &&
 
  490         const JQuantile     q = getQuantile(*module_a, *module_b);
 
  494         const double phi = (
JVector3Z_t.
getDot(q1.twist) >= 0.0 ? +1.0 : -1.0) * q1.twist.getAngle();
 
  496         R2 ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), phi);
 
  497         QA ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), Q.
getA());
 
  498         QB ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), Q.
getB());
 
  499         QC ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), Q.
getC());
 
  500         QD ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), Q.
getD());
 
  501         Q2 ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), Q.
getAngle());
 
  502         T2 ->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), q.
getMean());
 
  503         RMS->Fill(getBin(
string, module_a->getString()), getBin(floor, module_a->getFloor()), q.
getSTDev());
 
  510     for (TH2D* h2 : { &M2, X2, Y2, Z2, T2, RMS, R2, QA, QB, QC, QD, Q2 }) {
 
#define DEBUG(A)
Message macros.
 
#define ASSERT(A,...)
Assert macro.
 
#define make_field(A,...)
macro to convert parameter to JParserTemplateElement object
 
#define MAKE_CSTRING(A)
Make C-string.
 
std::vector< T >::difference_type distance(typename std::vector< T >::const_iterator first, typename PhysicsEvent::const_iterator< T > second)
Specialisation of STL distance.
 
double getT0() const
Get time offset.
 
int getFloor() const
Get floor number.
 
const JLocation & getLocation() const
Get location.
 
Router for direct addressing of module data in detector data structure.
 
Data structure for a composite optical module.
 
const JPMT & getPMT(const int index) const
Get PMT.
 
Data structure for PMT geometry, calibration and status.
 
Utility class to parse parameter values.
 
const JDirection3D & getDirection() const
Get direction.
 
double getDot(const JAngle3D &angle) const
Get dot product.
 
Data structure for position in three dimensions.
 
const JPosition3D & getPosition() const
Get position.
 
Data structure for unit quaternion in three dimensions.
 
const JQuaternion3D & getQuaternion() const
Get quaternion.
 
double getAngle() const
Get rotation angle.
 
double getB() const
Get b value.
 
double getD() const
Get d value.
 
double getC() const
Get c value.
 
double getA() const
Get a value.
 
double getY() const
Get y position.
 
double getDistance(const JVector3D &pos) const
Get distance to point.
 
double getZ() const
Get z position.
 
double getDot(const JVector3D &vector) const
Get dot product.
 
double getX() const
Get x position.
 
int getID() const
Get identifier.
 
Utility class to parse command line options.
 
Auxiliary class to manage set of compatible ROOT objects (e.g. histograms) using unique keys.
 
JPosition3D getPosition() const
Get position.
 
std::string getLabel(const JLocation &location)
Get module label for monitoring and other applications.
 
static JRotation getRotation
Function object to get rotation matrix to go from first to second module.
 
void load(const std::string &file_name, JDetector &detector)
Load detector from input file.
 
double getAngle(const JQuaternion3D &first, const JQuaternion3D &second)
Get space angle between quanternions.
 
static const JVector3D JVector3Z_t(0, 0, 1)
unit z-vector
 
double getDistance(const JFirst_t &first, const JSecond_t &second)
Get distance between objects.
 
This name space includes all other name spaces (except KM3NETDAQ, KM3NET and ANTARES).
 
static const std::string TCAL
PMT time offsets.
 
static const std::string PCAL
(optical|base) module positions
 
static const std::string SCAL
(module|PMT) status
 
static const std::string RCAL
optical module orientations
 
static const std::string ACAL
acoustic time offsets (piezo sensor or hydrophone)
 
static const std::string CCAL
compass alignment (a.k.a. quaternion calibration)
 
Auxiliary data structure for sequence of same character.
 
Auxiliary data structure for floating point format specification.
 
int getStatus() const
Get status.
 
Auxiliary data structure for decomposition of quaternion in twist and swing quaternions.
 
Empty structure for specification of parser element that is initialised (i.e. does not require input)...