47          const std::string& option) :
 
   60     void operator()(
const JType<T>& type)
 
   63         result = 
dynamic_cast<T&
>(object).
Fit(fcn, option.c_str(), 
"same");
 
   65       catch(
const std::exception&) {}
 
   96 int main(
int argc, 
char **argv)
 
  117     JParser<> zap(
"General purpose fit program for 1D ROOT objects.");
 
  119     zap[
'f'] = 
make_field(inputFile,   
"<input file>:<object name>");
 
  121     zap[
'F'] = 
make_field(formula,     
"fit formula, e.g: \"[0]+[1]*x\"");
 
  122     zap[
'@'] = 
make_field(startValues, 
"start values, e.g: \"p0 = GetMaximum;\"");
 
  126     zap[
'P'] = 
make_field(project,     
"projection")                              = 
'\0', 
'x', 
'X', 
'y', 
'Y';
 
  127     zap[
'O'] = 
make_field(option,      
"Fit option")                              = 
"";
 
  132   catch(
const exception &error) {
 
  133     FATAL(error.what() << endl);
 
  137   if (option.find(
'O') == string::npos) { option += 
"O"; }
 
  139   if (
debug ==  0 && option.find(
'Q') == string::npos) { option += 
"Q"; }
 
  141   bool px = (project == 
'x' || project == 
'X');  
 
  142   bool py = (project == 
'y' || project == 
'Y');  
 
  152   TF1* fcn = 
new TF1(
"user", formula.c_str());
 
  156   if (fcn->IsZombie()) {
 
  157     FATAL(
"Function: " << formula << 
" is zombie." << endl);
 
  162     DEBUG(
"Input: " << *input << endl);
 
  167       ERROR(
"File: " << input->getFullFilename() << 
" not opened." << endl);
 
  171     const TRegexp regexp(input->getObjectName());
 
  173     TIter iter(dir->GetListOfKeys());
 
  175     for (TKey* key; (key = (TKey*) iter.Next()) != NULL; ) {
 
  177       const TString tag(key->GetName());
 
  179       DEBUG(
"Key: " << tag << 
" match = " << tag.Contains(regexp) << endl);
 
  183       if (tag.Contains(regexp) && 
isTObject(key)) {
 
  185         TObject* 
object = key->ReadObj();
 
  189           TProfile& 
h1 = 
dynamic_cast<TProfile&
>(*object);
 
  191           object = h1.ProjectionX();
 
  197           TH2& h2 = 
dynamic_cast<TH2&
>(*object);
 
  201             object = h2.ProjectionX(
"_px", 
 
  202                                     h2.GetYaxis()->FindBin(
Y.getLowerLimit()),
 
  203                                     h2.GetYaxis()->FindBin(
Y.getUpperLimit()));
 
  207             object = h2.ProjectionY(
"_py", 
 
  208                                     h2.GetXaxis()->FindBin(
Y.getLowerLimit()),
 
  209                                     h2.GetXaxis()->FindBin(
Y.getUpperLimit()));
 
  213             ERROR(
"For 2D histograms, use option option -P for projections." << endl);
 
  234           FATAL(error << endl);
 
  237         DEBUG(
"Start values " << object->GetName() << endl);
 
  239         for (
int j = 0; 
j != fcn->GetNpar(); ++
j) {
 
  240           DEBUG(left << setw(12) << fcn->GetParName  (
j) << 
' ' << 
 
  244         Double_t 
xmin = numeric_limits<Double_t>::max();
 
  245         Double_t 
xmax = numeric_limits<Double_t>::lowest();
 
  248           TH1* 
h1 = 
dynamic_cast<TH1*
>(object);
 
  251             xmin = min(xmin, h1->GetXaxis()->GetXmin());
 
  252             xmax = max(xmax, h1->GetXaxis()->GetXmax());
 
  257           TGraph* 
g1 = 
dynamic_cast<TGraph*
>(object);
 
  260             for (Int_t i = 0; i != g1->GetN(); ++i) {
 
  261               xmin = min(xmin, g1->GetX()[i]);
 
  262               xmax = max(xmax, g1->GetX()[i]);
 
  268           xmin = 
X.getLowerLimit();
 
  269           xmax = 
X.getUpperLimit();
 
  272         fcn->SetRange(xmin, xmax);
 
  274         if (option.find(
"R") == string::npos) {
 
  281         JFit fit(*
object, fcn, option);
 
  286         if (fit.result != -1) {
 
  290           NOTICE(
"Fit values  " << object->GetName() << endl);
 
  291           NOTICE(
"Fit formula " << formula           << endl);
 
  293           for (
int j = 0; 
j != fcn->GetNpar(); ++
j) {
 
  294             NOTICE(left << setw(12) << fcn->GetParName  (
j) << 
' '     << 
 
  295                    SCIENTIFIC(12,5) << fcn->GetParameter(
j) << 
" +/- " << 
 
  301           WARNING(
"Object: not compatible with ROOT Fit." << endl);
 
Utility class to parse command line options. 
double getValue(const JScale_t scale)
Get numerical value corresponding to scale. 
int main(int argc, char *argv[])
int getParameter(const std::string &text)
Get parameter number from text string. 
TFitResultPtr Fit(TH1D *h)
then for HISTOGRAM in h0 h1
Empty structure for specification of parser element that is initialised (i.e. does not require input)...
Auxiliary class for a type holder. 
then fatal Wrong number of arguments fi set_variable STRING $argv[1] set_variable DETECTORXY_TXT $WORKDIR $DETECTORXY_TXT tail read X Y CHI2 RMS printf optimum n $X $Y $CHI2 $RMS awk v Y
Type definition of range. 
I/O formatting auxiliaries. 
#define make_field(A,...)
macro to convert parameter to JParserTemplateElement object 
do set_variable OUTPUT_DIRECTORY $WORKDIR T
General purpose messaging. 
JObject_t & for_each(JObject_t &object, JType< JTypeList< JHead_t, JTail_t > > typelist)
For each data type method. 
Auxiliary class to define a range between two values. 
Utility class to parse command line options. 
Wrapper class around string. 
Exception for parsing value. 
bool isTObject(const TKey *key)
Check if given key corresponds to a TObject. 
no fit printf nominal n $STRING awk v X
TDirectory * getDirectory(const JRootObjectID &id)
Get TDirectory pointer. 
Auxiliary data structure for floating point format specification. 
#define DEBUG(A)
Message macros. 
JFit()
Default constructor. 
Double_t g1(const Double_t x)
Function.