Jpp  17.3.0
the software that should make you happy
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Macros Pages
Functions
JHalibut.cc File Reference

Example program to determine N-fold coincidence rates. More...

#include <string>
#include <iostream>
#include <fstream>
#include <iomanip>
#include <vector>
#include <map>
#include "TROOT.h"
#include "TFile.h"
#include "TH1D.h"
#include "TF1.h"
#include "JDAQ/JDAQTimesliceIO.hh"
#include "km3net-dataformat/online/JDAQClock.hh"
#include "JDAQ/JDAQEvaluator.hh"
#include "JDetector/JDetector.hh"
#include "JDetector/JDetectorToolkit.hh"
#include "JDetector/JModuleRouter.hh"
#include "JTrigger/JHitR0.hh"
#include "JTrigger/JMatchL0.hh"
#include "JTrigger/JBuildL0.hh"
#include "JTrigger/JSuperFrame1D.hh"
#include "JTrigger/JSuperFrame2D.hh"
#include "JROOT/JManager.hh"
#include "JCalibrate/JCalibrateK40.hh"
#include "JROOT/JROOTClassSelector.hh"
#include "JTools/JQuantile.hh"
#include "JTools/JRange.hh"
#include "JSupport/JMultipleFileScanner.hh"
#include "JSupport/JTreeScanner.hh"
#include "JSupport/JAutoTreeScanner.hh"
#include "JSupport/JSupport.hh"
#include "JLang/JObjectMultiplexer.hh"
#include "JMath/JMathToolkit.hh"
#include "Jeep/JPrint.hh"
#include "Jeep/JParser.hh"
#include "Jeep/JMessage.hh"

Go to the source code of this file.

Functions

int main (int argc, char **argv)
 

Detailed Description

Example program to determine N-fold coincidence rates.

Author
mdejong

Definition in file JHalibut.cc.

Function Documentation

int main ( int  argc,
char **  argv 
)

Definition at line 52 of file JHalibut.cc.

53 {
54  using namespace std;
55  using namespace JPP;
56  using namespace KM3NETDAQ;
57 
58  typedef JRange<int> JRange_t;
59 
60  JMultipleFileScanner<> inputFile;
61  JLimit_t& numberOfEvents = inputFile.getLimit();
62  string outputFile;
63  string detectorFile;
64  double TMax_ns;
65  JROOTClassSelector selector;
66  JRange_t M;
67  string summaryFile;
68  string option;
69  int debug;
70 
71  try {
72 
73  JParser<> zap("Example program to determine N-fold coincidence rates.");
74 
75  zap['f'] = make_field(inputFile);
76  zap['o'] = make_field(outputFile) = "halibut.root";
77  zap['n'] = make_field(numberOfEvents) = JLimit::max();
78  zap['a'] = make_field(detectorFile);
79  zap['T'] = make_field(TMax_ns) = 20.0;
80  zap['C'] = make_field(selector) = getROOTClassSelection<JDAQTimesliceTypes_t>();
81  zap['M'] = make_field(M) = JRange_t(2, 31);
82  zap['s'] = make_field(summaryFile) = "halibut.txt";
83  zap['O'] = make_field(option) = "";
84  zap['d'] = make_field(debug) = 1;
85 
86  zap(argc, argv);
87  }
88  catch(const exception &error) {
89  FATAL(error.what() << endl);
90  }
91 
92 
94 
95  try {
96  load(detectorFile, detector);
97  }
98  catch(const JException& error) {
99  FATAL(error);
100  }
101 
102  const JModuleRouter router(detector);
103 
104  map<int, double> TMax_s; // histogram upper limit
105 
106  TMax_s[2] = 5.0e-2;
107  TMax_s[3] = 0.2e+0;
108  TMax_s[4] = 1.0e+0;
109  TMax_s[5] = 1.0e+1;
110  TMax_s[6] = 1.0e+2;
111 
112  typedef JSuperFrame2D<JHitR0> JSuperFrame2D_t;
113  typedef JSuperFrame1D<JHitR0> JSuperFrame1D_t;
114 
115  const JMatchL0<JHitR0> match(TMax_ns); // time window self-coincidences [ns]
116 
117  typedef JManager<int, TH1D> JManager_t;
118 
119  JManager_t H1(new TH1D("H1[%]", NULL, 100, -TMax_ns, +TMax_ns));
120  JManager_t T1(new TH1D("T1[%]", NULL, 100, 0.0, TMax_s[M.getLowerLimit()]));
121 
122  H1->Sumw2();
123  T1->Sumw2();
124 
126 
128 
129  JTreeScannerInterface<JDAQTimeslice>* ps = zmap[selector];
130 
131  counter_type counter = 0;
132 
133  // process file-by-file to speed up JTreeScanner::configure();
134 
135  for (JMultipleFileScanner<>::const_iterator i = inputFile.begin(); i != inputFile.end(); ++i) {
136 
137  STATUS("Processing " << *i << endl);
138 
139  ps->configure(*i);
140 
141  vector<double> t0(detector.size(), 0.0);
142 
143  for ( ; ps->hasNext() && counter != inputFile.getLimit(); ++counter) {
144 
145  STATUS("event: " << setw(10) << counter << '\r'); DEBUG(endl);
146 
147  const JDAQTimeslice* timeslice = ps->next();
148 
149  for (JDAQTimeslice::const_iterator frame = timeslice->begin(); frame != timeslice->end(); ++frame) {
150 
151  JSuperFrame2D_t& buffer = JSuperFrame2D_t::demultiplex(*frame, router.getModule(frame->getModuleID()));
152 
153  for (JSuperFrame2D_t::iterator i = buffer.begin(); i != buffer.end(); ++i) {
154  i->join(match);
155  }
156 
157  JSuperFrame1D_t& data = JSuperFrame1D_t::multiplex(buffer);
158 
159  if (data.size() > 1) {
160 
161  TH1D* h1 = H1[frame->getModuleID()];
162  TH1D* t1 = T1[frame->getModuleID()];
163 
164  for (vector<JHitR0>::const_iterator p = data.begin(); p != data.end(); ) {
165 
167 
168  while (++q != data.end() && q->getT() - p->getT() <= TMax_ns ) {}
169 
170  const int N = distance(p,q);
171 
172  if (M(N)) {
173 
174  const int i = router.getIndex(frame->getModuleID());
175  const double ts = getTimeOfRTS(frame->getFrameIndex()) + p->getT();
176 
177  t1->Fill((ts - t0[i]) * 1.0e-9); // [s]
178 
179  t0[i] = ts;
180 
181  const double W = factorial(N, 2);
182 
183  for (vector<JHitR0>::const_iterator __p = p; __p != q; ++__p) {
184  for (vector<JHitR0>::const_iterator __q = __p; ++__q != q; ) {
185  h1->Fill(JCombinatorics::getSign(__p->getPMT(),__q->getPMT()) * (__q->getT() - __p->getT()), 1.0/W);
186  }
187  }
188  }
189 
190  p = q;
191  }
192  }
193  }
194  }
195  STATUS(endl);
196  }
197 
198  if (counter != 0) {
199 
200  const double V = (H1->GetXaxis()->GetXmax() - H1->GetXaxis()->GetXmin()) / (double) H1->GetXaxis()->GetNbins(); // [ns]
201  const double W = counter * getFrameTime() * 1.0e-9; // [s]
202 
203  for (JManager_t::iterator i = H1.begin(); i != H1.end(); ++i) {
204  i->second->Scale(1.0/(V*W));
205  }
206 
207  for (JManager_t::iterator i = T1.begin(); i != T1.end(); ++i) {
208  i->second->Scale(1.0/i->second->GetMaximum());
209  }
210  }
211 
212  if (summaryFile != "") {
213 
214  const double V = (H1->GetXaxis()->GetXmax() - H1->GetXaxis()->GetXmin()) / (double) H1->GetXaxis()->GetNbins(); // [ns]
215 
216  const int number_of_strings = getNumberOfStrings(detector);
217  const int number_of_floors = getNumberOfFloors (detector);
218  const int PRECISION = (M.getLowerLimit() > 2 ? 4 : 3);
219 
220  ofstream out(summaryFile.c_str());
221 
222  out << "Multiplicity " << M << endl;
223  out << "-------------------------------------------------------" << endl;
224  out << " location | Gauss | S - B | Total | slope " << endl;
225  out << " | [Hz] | [Hz] | [Hz] | [Hz] " << endl;
226  out << "-------------------------------------------------------" << endl;
227 
228  JQuantile Q[4];
229 
230  for (int string = 1; string <= number_of_strings; ++string) {
231  for (int floor = number_of_floors; floor >= 1; --floor) {
232 
233  const int id = detector.getModule(JLocation(string,floor)).getID();
234 
235  out << " " << setw(3) << string << ' ' << setw(2) << floor << " ";
236 
237  TH1D* h1 = (H1.find(id) != H1.end() ? H1[id] : NULL);
238  TH1D* t1 = (T1.find(id) != T1.end() ? T1[id] : NULL);
239 
240  if (h1 != NULL) {
241 
242  TF1 f1("f1", "[0]*exp(-0.5*(x-[1])*(x-[1])/([2]*[2]))/(TMath::Sqrt(2*TMath::Pi())*[2]) + [3]");
243 
244  f1.SetParameter(0, h1->GetMaximum());
245  f1.SetParameter(1, 0.0);
246  f1.SetParameter(2, h1->GetRMS() * 0.25);
247  f1.SetParameter(3, h1->GetMinimum());
248 
249  h1->Fit(&f1, option.c_str(), "same");
250 
251  out << " | " << FIXED(8,PRECISION) << f1.GetParameter(0);
252  out << " | " << FIXED(8,PRECISION) << (h1->GetSumOfWeights() - f1.GetParameter(3) * h1->GetNbinsX()) * V;
253  out << " | " << FIXED(8,PRECISION) << h1->GetSumOfWeights() * V;
254 
255  Q[0].put( f1.GetParameter(0));
256  Q[1].put((h1->GetSumOfWeights() - f1.GetParameter(3) * h1->GetNbinsX()) * V);
257  Q[2].put( h1->GetSumOfWeights() * V);
258  }
259 
260  if (t1 != NULL) {
261 
262  TF1 f1("f1", "[0]*exp(-[1]*x)");
263 
264  f1.SetParameter(0, t1->GetMaximum());
265  f1.SetParameter(1, 1.0 / t1->GetRMS());
266 
267  t1->Fit(&f1, option.c_str(), "same");
268 
269  out << " | " << FIXED(8,PRECISION) << f1.GetParameter(1);
270 
271  Q[3].put(f1.GetParameter(1));
272  }
273 
274  out << endl;
275  }
276 
277  out << endl;
278  }
279 
280  if (Q[0].getCount() != 0) {
281 
282  out << "-------------------------------------------------------" << endl;
283  out << setw(10) << left << " average";
284 
285  for (int i = 0; i != sizeof(Q)/sizeof(Q[0]); ++i) {
286  out << " | " << FIXED(8,PRECISION) << Q[i].getMean();
287  }
288 
289  out << endl;
290  }
291 
292  out.close();
293  }
294 
295  if (outputFile != "") {
296 
297  TFile out(outputFile.c_str(), "RECREATE");
298 
299  H1.Write(out);
300  T1.Write(out);
301 
302  out.Close();
303  }
304 }
Utility class to parse command line options.
Definition: JParser.hh:1517
General exception.
Definition: JException.hh:23
Q(UTCMax_s-UTCMin_s)-livetime_s
std::vector< T >::difference_type distance(typename std::vector< T >::const_iterator first, typename PhysicsEvent::const_iterator< T > second)
Specialisation of STL distance.
L0 match criterion.
Definition: JMatchL0.hh:27
Auxiliary data structure for running average, standard deviation and quantiles.
Definition: JQuantile.hh:43
#define STATUS(A)
Definition: JMessage.hh:63
Detector data structure.
Definition: JDetector.hh:89
Auxiliary class to select ROOT class based on class name.
Router for direct addressing of module data in detector data structure.
then JShowerPostfit f $INPUT_FILE o $OUTPUT_FILE N
Long64_t counter_type
Type definition for counter.
Auxiliary class for a type holder.
Definition: JType.hh:19
Auxiliary data structure for floating point format specification.
Definition: JManip.hh:446
double getTimeOfRTS(const JDAQChronometer &chronometer)
Get time of last RTS in ns since start of run for a given chronometer.
V(JDAQEvent-JTriggerReprocessor)*1.0/(JDAQEvent+1.0e-10)
string outputFile
Template definition for direct access of elements in ROOT TChain.
long long int factorial(const long long int n)
Determine factorial.
Definition: JMathToolkit.hh:42
Auxiliary interface for direct access of elements in ROOT TChain.
double getMean() const
Get mean value.
Definition: JQuantile.hh:252
1-dimensional frame with time calibrated data from one optical module.
const JPolynome f1(1.0, 2.0, 3.0)
Function.
Auxiliary class for defining the range of iterations of objects.
Definition: JLimit.hh:41
Type definition of range.
Definition: JHead.hh:41
Auxiliary class to manage set of compatible ROOT objects (e.g. histograms) using unique keys...
Definition: JManager.hh:43
Detector file.
Definition: JHead.hh:226
Logical location of module.
Definition: JLocation.hh:37
#define make_field(A,...)
macro to convert parameter to JParserTemplateElement object
Definition: JParser.hh:1993
double getFrameTime()
Get frame time duration.
Definition: JDAQClock.hh:162
int getNumberOfFloors(const JDetector &detector)
Get number of floors.
then awk string
void put(const double x, const double w=1.0)
Put value.
Definition: JQuantile.hh:133
Data time slice.
static const JStringCounter getNumberOfStrings
Function object to count unique strings.
Auxiliary class to select JTreeScanner based on ROOT class name.
#define FATAL(A)
Definition: JMessage.hh:67
void load(const std::string &file_name, JDetector &detector)
Load detector from input file.
int getCount(const T &hit)
Get hit count.
2-dimensional frame with time calibrated data from one optical module.
const JLimit & getLimit() const
Get limit.
Definition: JLimit.hh:73
do set_variable DETECTOR_TXT $WORKDIR detector
int debug
debug level
#define DEBUG(A)
Message macros.
Definition: JMessage.hh:62