Conjugate gradient fit.  
 More...
#include <JGradient.hh>
Conjugate gradient fit. 
Definition at line 73 of file JGradient.hh.
 
  
  
      
        
          | JFIT::JGradient::JGradient  | 
          ( | 
          const size_t  | 
          Nmax = std::numeric_limits<size_t>::max(),  | 
         
        
           | 
           | 
          const size_t  | 
          Nextra = 0,  | 
         
        
           | 
           | 
          const double  | 
          epsilon = 1.0e-4,  | 
         
        
           | 
           | 
          const int  | 
          debug = 3  | 
         
        
           | 
          ) | 
           |  | 
         
       
   | 
  
inline   | 
  
 
Constructor. 
The number of iterations and epsilon refer to the number of steps and the distance to the minimum, respectively.
The number of extra steps can be used to overcome a possible hurdle on the way.
- Parameters
 - 
  
    | Nmax | maximum number of iterations  | 
    | Nextra | maximum number of extra steps  | 
    | epsilon | epsilon  | 
    | debug | debug  | 
  
   
Definition at line 88 of file JGradient.hh.
size_t Nextra
maximum number of extra steps 
 
size_t Nmax
maximum number of iterations 
 
 
 
 
template<class T > 
  
  
      
        
          | double JFIT::JGradient::operator()  | 
          ( | 
          const T &  | 
          getChi2 | ) | 
           | 
         
       
   | 
  
inline   | 
  
 
Fit. 
The template parameter should provide for the following function operator. 
   double operator()(int option);
 The value of the option corresponds to the following cases.
- 0 => step wise improvement of the chi2;
 
- 1 => evaluation of the chi2 before the determination of the gradient of the chi2; and
 
- 2 => evaluation of the derivative of the chi2 to each fit parameter.
 
- Parameters
 - 
  
  
 
Definition at line 114 of file JGradient.hh.
  120         return numeric_limits<double>::max();
 
  125       const size_t N = this->size();
 
  130       for (
size_t i = 0; 
i != 
N; ++
i) {
 
  136       size_t number_of_iterations = 0;
 
  138       for ( ; number_of_iterations != 
Nmax; ++number_of_iterations) {
 
  140         DEBUG(
"chi2[0]  " << setw(4) << number_of_iterations << 
' ' << 
FIXED(12,5) << 
chi2[0] << endl);
 
  149         for (
double ds = 1.0; ds > 1.0e-3; ) {
 
  151           this->
move(+1.0 * ds);
 
  155           DEBUG(
"chi2[3]  " << setw(4) << m << 
' ' << 
FIXED(12,5) << 
chi2[3] << 
' ' << 
FIXED(12,5) << ds << endl);
 
  181               for ( ; m != 0; --m) {
 
  182                 this->
move(-1.0 * ds);
 
  189           this->
move(-1.0 * ds);
 
  199             const double f21 = 
chi2[2] - 
chi2[1];   
 
  200             const double f23 = chi2[2] - chi2[3];   
 
  202             const double xs  =  0.5 * (f21 - f23) / (f23 + f21);
 
  204             this->
move(+1.0 * xs * ds);
 
  208             if (chi2[3] < chi2[2]) {
 
  214               this->
move(-1.0 * xs * ds);
 
  219             DEBUG(
"chi2[2]  " << setw(4) << number_of_iterations << 
' ' << 
FIXED(12,5) << chi2[2] << 
' ' << 
SCIENTIFIC(12,5) << ds << endl);
 
  229         if (fabs(chi2[2] - chi2[0]) < 
epsilon * 0.5 * (fabs(chi2[0]) + fabs(chi2[2]))) {
 
  241         for (
size_t i = 0; 
i != 
N; ++
i){
 
  252         for (
size_t i = 0; 
i != 
N; ++
i){
 
  254           H[
i] =  G[
i] + dgg * 
H[
i];
 
  259       DEBUG(
"chi2[0]  " << setw(4) << number_of_iterations << 
' ' << 
FIXED(12,5) << chi2[0] << endl);
 
void move(const double factor)
Move. 
 
static const double H
Planck constant [eV s]. 
 
void evaluate(const T &getChi2)
Evaluate gradient. 
 
Auxiliary data structure for floating point format specification. 
 
size_t Nextra
maximum number of extra steps 
 
std::vector< double > gradient
 
size_t Nmax
maximum number of iterations 
 
then usage $script< input file >[option[primary[working directory]]] nWhere option can be N
 
double getChi2(const double P)
Get chi2 corresponding to given probability. 
 
Auxiliary data structure for floating point format specification. 
 
#define DEBUG(A)
Message macros. 
 
 
 
 
template<class T > 
  
  
      
        
          | void JFIT::JGradient::evaluate  | 
          ( | 
          const T &  | 
          getChi2 | ) | 
           | 
         
       
   | 
  
inlineprivate   | 
  
 
Evaluate gradient. 
Definition at line 275 of file JGradient.hh.
  280       const size_t N = this->size();
 
  292       for (
size_t i = 0; 
i != 
N; ++
i) {
 
  293         if ((*
this)[
i].
name.size() > width) {
 
  294           width = (*this)[
i].name.size();
 
  300       for (
size_t i = 0; 
i != 
N; ++
i) {
 
  302         if ((*
this)[
i].value != 0.0) {
 
  304           (*this)[
i]->apply(+0.5 * (*
this)[
i].value);
 
  308           (*this)[
i]->apply(-0.5 * (*
this)[
i].value);
 
  309           (*this)[
i]->apply(-0.5 * (*
this)[
i].value);
 
  315           (*this)[
i]->apply(+0.5 * (*
this)[
i].value);
 
  327       DEBUG(setw(width) << left << 
"|gradient|" << right << 
' ' << 
FIXED(12,5) << sqrt(
V) << endl);
 
then echo Enter input within $TIMEOUT_S seconds echo n User name
 
Auxiliary data structure for floating point format specification. 
 
V(JDAQEvent-JTriggerReprocessor)*1.0/(JDAQEvent+1.0e-10)
 
std::vector< double > gradient
 
then usage $script< input file >[option[primary[working directory]]] nWhere option can be N
 
double getChi2(const double P)
Get chi2 corresponding to given probability. 
 
#define DEBUG(A)
Message macros. 
 
 
 
 
  
  
      
        
          | void JFIT::JGradient::move  | 
          ( | 
          const double  | 
          factor | ) | 
           | 
         
       
   | 
  
inlineprivate   | 
  
 
Move. 
- Parameters
 - 
  
  
 
Definition at line 336 of file JGradient.hh.
  339         for (
size_t i = 0; 
i != this->size(); ++
i) {
 
  340           (*this)[ 
i ]->apply((*
this)[ 
i ].value * 
gradient[ 
i ] * factor);
 
  342       } 
else if (factor < 0.0) {
 
  343         for (
size_t i = this->size(); 
i != 0; --
i) {
 
  344           (*this)[
i-1]->apply((*
this)[
i-1].value * 
gradient[
i-1] * factor);
 
std::vector< double > gradient
 
 
 
 
      
        
          | size_t JFIT::JGradient::Nmax | 
        
      
 
 
      
        
          | size_t JFIT::JGradient::Nextra | 
        
      
 
 
      
        
          | double JFIT::JGradient::epsilon | 
        
      
 
 
      
        
          | int JFIT::JGradient::debug | 
        
      
 
 
  
  
      
        
          | double JFIT::JGradient::chi2[5] | 
         
       
   | 
  
private   | 
  
 
 
The documentation for this struct was generated from the following file: