1 #ifndef __JFIT__JGRADIENT__ 
    2 #define __JFIT__JGRADIENT__ 
   21 namespace JPP { 
using namespace JFIT; }
 
   40     virtual void apply(
const double step) = 0;
 
   48     public std::shared_ptr<JParameter_t>
 
   91               const int    debug    = 3) :
 
  120         return numeric_limits<double>::max();
 
  125       const size_t N = this->size();
 
  130       for (
size_t i = 0; 
i != 
N; ++
i) {
 
  136       size_t number_of_iterations = 0;
 
  138       for ( ; number_of_iterations != 
Nmax; ++number_of_iterations) {
 
  140         DEBUG(
"chi2[0]  " << setw(4) << number_of_iterations << 
' ' << 
FIXED(12,5) << 
chi2[0] << endl);
 
  149         for (
double ds = 1.0; ds > 1.0e-3; ) {
 
  151           this->
move(+1.0 * ds);
 
  155           DEBUG(
"chi2[3]  " << setw(4) << m << 
' ' << 
FIXED(12,5) << 
chi2[3] << 
' ' << 
FIXED(12,5) << ds << endl);
 
  181               for ( ; m != 0; --m) {
 
  182                 this->
move(-1.0 * ds);
 
  189           this->
move(-1.0 * ds);
 
  199             const double f21 = 
chi2[2] - 
chi2[1];   
 
  200             const double f23 = chi2[2] - chi2[3];   
 
  202             const double xs  =  0.5 * (f21 - f23) / (f23 + f21);
 
  204             this->
move(+1.0 * xs * ds);
 
  208             if (chi2[3] < chi2[2]) {
 
  214               this->
move(-1.0 * xs * ds);
 
  219             DEBUG(
"chi2[2]  " << setw(4) << number_of_iterations << 
' ' << 
FIXED(12,5) << chi2[2] << 
' ' << 
SCIENTIFIC(12,5) << ds << endl);
 
  241         for (
size_t i = 0; 
i != 
N; ++
i){
 
  252         for (
size_t i = 0; 
i != 
N; ++
i){
 
  254           H[
i] =  G[
i] + dgg * H[
i];
 
  259       DEBUG(
"chi2[0]  " << setw(4) << number_of_iterations << 
' ' << 
FIXED(12,5) << 
chi2[0] << endl);
 
  280       const size_t N = this->size();
 
  292       for (
size_t i = 0; 
i != 
N; ++
i) {
 
  293         if ((*
this)[
i].
name.size() > width) {
 
  294           width = (*this)[
i].name.size();
 
  300       for (
size_t i = 0; 
i != 
N; ++
i) {
 
  302         if ((*
this)[
i].value != 0.0) {
 
  304           (*this)[
i]->apply(+0.5 * (*
this)[
i].value);
 
  308           (*this)[
i]->apply(-0.5 * (*
this)[
i].value);
 
  309           (*this)[
i]->apply(-0.5 * (*
this)[
i].value);
 
  315           (*this)[
i]->apply(+0.5 * (*
this)[
i].value);
 
  327       DEBUG(setw(width) << left << 
"|gradient|" << right << 
' ' << 
FIXED(12,5) << sqrt(
V) << endl);
 
  339         for (
size_t i = 0; 
i != this->size(); ++
i) {
 
  340           (*this)[ 
i ]->apply((*
this)[ 
i ].value * 
gradient[ 
i ] * factor);
 
  342       } 
else if (factor < 0.0) {
 
  343         for (
size_t i = this->size(); 
i != 0; --
i) {
 
  344           (*this)[
i-1]->apply((*
this)[
i-1].value * 
gradient[
i-1] * factor);
 
JModifier_t(const std::string &name, JParameter_t *parameter, const double value)
Constructor. 
void move(const double factor)
Move. 
virtual ~JParameter_t()
Virtual destructor. 
then echo Enter input within $TIMEOUT_S seconds echo n User name
double operator()(const T &getChi2)
Fit. 
static const double H
Planck constant [eV s]. 
void evaluate(const T &getChi2)
Evaluate gradient. 
Auxiliary data structure for floating point format specification. 
V(JDAQEvent-JTriggerReprocessor)*1.0/(JDAQEvent+1.0e-10)
size_t Nextra
maximum number of extra steps 
do set_variable OUTPUT_DIRECTORY $WORKDIR T
JGradient(const size_t Nmax=std::numeric_limits< size_t >::max(), const size_t Nextra=0, const double epsilon=1.0e-4, const int debug=3)
Constructor. 
std::vector< double > gradient
virtual void apply(const double step)=0
Apply step. 
size_t Nmax
maximum number of iterations 
Auxiliary data structure for fit parameter. 
General purpose messaging. 
Auxiliary data structure for editable parameter. 
then usage $script< input file >[option[primary[working directory]]] nWhere option can be N
double getChi2(const double P)
Get chi2 corresponding to given probability. 
Auxiliary data structure for floating point format specification. 
#define DEBUG(A)
Message macros.