134     JParser<> zap(
"Program to test JGradient algorithm.");
 
  144   catch(
const exception& error) {
 
  145     FATAL(error.what() << endl);
 
  148   gRandom->SetSeed(seed);
 
  150   if (numberOfEvents == 0) {
 
  152     buffer.push_back(element_type(-3.00000,     16.00000));
 
  153     buffer.push_back(element_type(-2.50000,     22.00000));
 
  154     buffer.push_back(element_type(-2.00000,     70.00000));
 
  155     buffer.push_back(element_type(-1.50000,    152.00000));
 
  156     buffer.push_back(element_type(-1.00000,    261.00000));
 
  157     buffer.push_back(element_type(-0.50000,    337.00000));
 
  158     buffer.push_back(element_type( 0.00000,    378.00000));
 
  159     buffer.push_back(element_type( 0.50000,    360.00000));
 
  160     buffer.push_back(element_type( 1.00000,    253.00000));
 
  161     buffer.push_back(element_type( 1.50000,    129.00000));
 
  162     buffer.push_back(element_type( 2.00000,     72.00000));
 
  163     buffer.push_back(element_type( 2.50000,     22.00000));
 
  164     buffer.push_back(element_type( 3.00000,     11.00000));
 
  170     fit = 
JGauss(0.5, 0.5, 700.0, 0.0);
 
  172     gradient.push_back(
JModifier_t(
"mean",       
new JGaussEditor(fit, 
JGauss(1.0, 0.0, 0.0, 0.0)), 1.0e-2));
 
  173     gradient.push_back(
JModifier_t(
"sigma",      
new JGaussEditor(fit, 
JGauss(0.0, 1.0, 0.0, 0.0)), 1.0e-2));
 
  174     gradient.push_back(
JModifier_t(
"signal",     
new JGaussEditor(fit, 
JGauss(0.0, 0.0, 1.0, 0.0)), 5.0e-0));
 
  175     gradient.push_back(
JModifier_t(
"background", 
new JGaussEditor(fit, 
JGauss(0.0, 0.0, 0.0, 1.0)), 5.0e-1));
 
  186     const size_t nx   = 21;
 
  187     const double xmin = -5.0;
 
  188     const double xmax = +5.0;
 
  190     for (
int i = 0; 
i != numberOfEvents; ++
i) {
 
  192       STATUS(
"event: " << setw(10) << 
i << 
'\r'); 
DEBUG(endl);
 
  196       for (
double x = xmin, dx = (xmax - xmin) / (nx - 1); 
x < xmax + 0.5*dx; 
x += dx) {
 
  198         const double value = 
gauss(
x);
 
  200         buffer.push_back(element_type(
x, gRandom->Poisson(value)));
 
  207       fit = 
JGauss(0.5, 0.5, 700.0, 0.0);
 
  209       gradient.push_back(
JModifier_t(
"mean",       
new JGaussEditor(fit, 
JGauss(1.0, 0.0, 0.0, 0.0)), 1.0e-2));
 
  210       gradient.push_back(
JModifier_t(
"sigma",      
new JGaussEditor(fit, 
JGauss(0.0, 1.0, 0.0, 0.0)), 1.0e-2));
 
  211       gradient.push_back(
JModifier_t(
"signal",     
new JGaussEditor(fit, 
JGauss(0.0, 0.0, 1.0, 0.0)), 5.0e-0));
 
  212       gradient.push_back(
JModifier_t(
"background", 
new JGaussEditor(fit, 
JGauss(0.0, 0.0, 0.0, 1.0)), 5.0e-1));
 
  216       DEBUG(
"Final value " << fit << endl);
 
  217       DEBUG(
"Chi2 " << chi2 << endl);
 
  221       Q[2].
put(fit.signal     - 
gauss.signal);
 
  222       Q[3].
put(fit.background - 
gauss.background);
 
  225     for (
int i = 0; 
i != 
sizeof(
Q)/
sizeof(Q[0]); ++
i) {
 
  229     for (
int i = 0; 
i != 
sizeof(
Q)/
sizeof(Q[0]); ++
i) {
 
  233     ASSERT(Q[0].getSTDev() < precision.mean);
 
  234     ASSERT(Q[1].getSTDev() < precision.sigma);
 
  235     ASSERT(Q[2].getSTDev() < precision.signal);
 
  236     ASSERT(Q[3].getSTDev() < precision.background);
 
Utility class to parse command line options. 
 
Q(UTCMax_s-UTCMin_s)-livetime_s
 
double getMean(vector< double > &v)
get mean of vector content 
 
#define ASSERT(A,...)
Assert macro. 
 
#define make_field(A,...)
macro to convert parameter to JParserTemplateElement object 
 
std::ostream & shortprint(std::ostream &out)
Set short printing. 
 
std::ostream & longprint(std::ostream &out)
Set long printing. 
 
Auxiliary data structure for editable parameter. 
 
Auxiliary data structure for average. 
 
then set_variable NUMBER_OF_TESTS else set_variable NUMBER_OF_TESTS fi function gauss()
 
void put(const double x)
Put value. 
 
then if[[!-f $DETECTOR]] then JDetector sh $DETECTOR fi cat $WORKDIR trigger_parameters txt<< EOFtrigger3DMuon.enabled=1;trigger3DMuon.numberOfHits=5;trigger3DMuon.gridAngle_deg=1;ctMin=0.0;TMaxLocal_ns=15.0;EOF set_variable TRIGGEREFFICIENCY_TRIGGERED_EVENTS_ONLY INPUT_FILES=() for((i=1;$i<=$NUMBER_OF_RUNS;++i));do JSirene.sh $DETECTOR $JPP_DATA/genhen.km3net_wpd_V2_0.evt.gz $WORKDIR/sirene_ ${i}.root JTriggerEfficiency.sh $DETECTOR $DETECTOR $WORKDIR/sirene_ ${i}.root $WORKDIR/trigger_efficiency_ ${i}.root $WORKDIR/trigger_parameters.txt $JPP_DATA/PMT_parameters.txt INPUT_FILES+=($WORKDIR/trigger_efficiency_ ${i}.root) done for ANGLE_DEG in $ANGLES_DEG[*];do set_variable SIGMA_NS 3.0 set_variable OUTLIERS 3 set_variable OUTPUT_FILE $WORKDIR/matrix\[${ANGLE_DEG}\deg\].root $JPP_DIR/examples/JReconstruction-f"$INPUT_FILES[*]"-o $OUTPUT_FILE-S ${SIGMA_NS}-A ${ANGLE_DEG}-O ${OUTLIERS}-d ${DEBUG}--!fiif[[$OPTION=="plot"]];then if((0));then for H1 in h0 h1;do JPlot1D-f"$WORKDIR/matrix["${^ANGLES_DEG}" deg].root:${H1}"-y"1 2e3"-Y-L TR-T""-\^"number of events [a.u.]"-> o chi2
 
double getChi2(const double P)
Get chi2 corresponding to given probability. 
 
#define DEBUG(A)
Message macros.